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FEEDBACK SYSTEM. DESIG.N:

The Single-Variate Case -Part V
* - R. Sabi.' J.. Murry, 0. ChA2., C. Karmokoiwi',

and A. Jyaw4

Abstract. A lreenty developed algebraic p)proadi to the feedback system design
problem is reviewed via the derivation of the theory in the single-variate ase. This
allows the simple algebraic nature of the theory to be brought to the fore while

simltaeoulyminuima the complemiies of the puesenation. Rather than simply
giving a sigl solution to the prescrbed design problem we endeavor to give a com-
plete parameterization of the set of compensators which meet specifications.
Although this might at first see to complicate'our theom it, in fact, opens the way
for a sequential approach to the design 4oblein in which one pur-ometerizes the
subset of those comupensators which meat the second speciflcatio...etc; Specific
problem investigte include feedback system stabilutin, the tracking and distu-

0 ~~bance rejection ptoblenm robust daign transfer fnction design pole placement
simultaneous stablizfiation, and stable stabilization.

1. Introduction
In 1976 Youla, Bongiorno, and .labr published two, now classical, papers
123,241 in which a complete paameterization of the set of stabilizing comn-
pensators for a multivariate feedback systm was obtained. In the ensuing
years this work, which is often termed the YB.J theory, has led to the
development of an entirely new approach to the feedback system design
problem. Indeed, their stabilization theory has been extended to include:
* (i) the tracking and disturbance rejection problem

(ii) robust design algorithms
(iii) design with a proper or stable compensator
(iv) transfer function design

*fteceived Septemuber 16. 1"11; revised N4ovember 10. 1"1. This research was supported by
the Joint Services Electronics Programs at. Texas Tech University under ONR Contract
76-C- 1136.

0 IDepartment of Electrical Engineerng, Texas Tecb University. Lubbock. Texas
* 79409. USA.

2Presently with Honeywell, Inc., Phoenix. Arizoa.
3Presemly with Kearfott Division, Sieser. Inc., Little Falls. New Jersey.
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I(v
Iv) Pole placement
(vi) simultaneous stabilization

- Moreover, much of the work has been ummed to the caw of general linear
systems. distributed, tme-varying, mui~lJ~umiou etc.; by formulai
It in an abstract ring teortic (8,10) or alseblo- mu setting (17). Un-
fortunw*, tbase S Ilizatios bave been adheved at he cost of increa
ig the a y oft' theory ar au ck, the * ~algebraic c
of the work ies ben obscured.

The purpose of the present paper is to survey this literature in such a way
.. as to Mluste the simplicity of the theory. To thi end the presentation is

restricted to the single-varate cae wherein a simple algebraic theory is
posible. Indeed, by so doing we are able to give simple single-varite

- algebraic derivations for several results whose true curacter ha hitherto
_. been obscured by the abstract da theoretic or multivaiable theory.: "The key to our theory is a three step design phOosopby

(ii) achievmcent of design conarats
(ii) optimization of system Performance

First and foremost, a feedback system must be sl and,.as suc, the first
swe ia the design procm is the p,,anuteimzaiir. ofd st*b C couPOR-
sertr for the gi= plant. Althoug it mih suffic t5 specify a single
stabilin compensator if our oal was simply to design a sable system, in

I ice stabilizations only the first step of the design process. As such, we
must ch1aractrin an stabiizing compason if w are to chooe among the

.- stabUlncizin compensators to find one which also achieves the design con-
straints and/or optimizes system performance. A compet pmameterie-

-'tion of~the set of stabilizing compensators for the given plant is thus ob-
tained as a first step in the design proces Indee, th p ee aton s
chosen in such a way that the various feedback system gains are linear
(affine) in the resultant design panametee thereby setting the stage for the
choice of a design parameter which also achieves the design constrains
and/or optimizer $am measure of Jytem iorman. -

Once the stabilizing compensators have been characterized, step two of
the design process is to choose a subset of the stabilizing compensators.
which also achieve the prescribed design constraints; tracking and distur-
bance rejection, transfer function specification, robustness, etc. Finally. if
any remaining design latitude eists after the design constraints have been
-met it may be used to optimize some measure of system performance; sen-
sitivityd enerd r consumption etc.

The paper is divided into two parts dealing with the classical asymptotic
design problemr. stabilization, traking. and disturbance rejection; and a
survey of modem frequency domain design; robust design, pole placement,

% A simultaneous design, respectively. In the remainder of this introduction the

V 2
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* . " frctionui representation theory for a single-variate system is developed.
The key to this theory lies with the representation of a rational function as a
ratio of stable raional functions rather than as a ratio of polynomials. Such
a formulation opens the door to the desired generalization, wherein stability

0 is weD deflined even though no analog of a polynomial exists. Moreover, it
yields what we believe to be a more natural concept of coprismens in which
ony ancellather, betw (closed) right half-pine ze r e forbidden. In-

tdeed o the (strict) begi halfplane plays only a minimal role nole theory.
In Section 2 a derivation of the YB stabilization theory is formulated in

terms of b stable oprine fractional representation. Although this deriva-
ion has appeared before r 4o8b1. even iny erhnow e-varia e case, a complete
proof is given because of its fundamental nature to the remainder of the

work. Indeed, the proof technique introduced hee is repeated in one form
or another, throughout the paper.

Sections 3- are devoted to the reking and dTistance rjection pro-
blos t4o . Unlike the stabilization problem c solution to these problems
s may fail to exist. Necesa and sufficient onditios forthe existence of a

:r solution are. however, iven in the fort of appropriate coprimeness criteria

and a complete parameterization of the required set ofompensator is o -
tatd when these criteria are sainsfied.

Pan 1 of the paper begins with Section 6 in which the problem of robut
d" in is taken up. Unlike the stabilization problem for which every solu-
Stion is robust a solution to the tracking and/or disturbance rejection prob-
lem may fail to be robust. Surprisingly, however, whenever these problems
ystare solvable they am robuly solvable. As such, bgin ng with the same

toprimene- criteria used in the non-robust ca we give an explicit
*dtrmiedprciseon for the set of compensators which robustly solve the

tracking and disturbance rejection problems. This result, however, only ap-
0" plies to our single-variate case. In the general multivariate case a robust

solution may fail to exist even though a non-robust solution eists [I I).
In Section 7 the problem of designing a compensator which simul-

taneously stabilizes a feedback system and realizes . prescribed input-
output feedback system gain is investigated. The required existence criteria

rfor tis traver funcion deign problem are formulated in terms of i
div isibility condition in the ring of stable transfer functions. This is followed in

i Section 8 by an investigation of the pok placement problem in which one
desires to construct a compensator which will simultaneously stabilize a
system and place the poles of its input-output gain at prescribed points in
the left half-plane. Interestingly, the extent to which this end can be achieved is

I• determined precisely by the "degree" to which the plant fails to be

miniphase.
~In Section 9 the problem of designing a compensator which simul-

~taneously stabilizes two distinct plants is solved. Although this two plant

problem is a very special case of the general simultaneous design problem it

.
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is the one example of the problem for which a definitive frequency domain
design criterion exists [7] and is thus indicative of the direction of future

research in this area. Moreover, the problem of stabilizing a feedback
system with asrablecompmnswor (25]proves to beaspecial case of this two
plant problem which is developed in Section 10.

Secdon I Iis devoted to a shor discussion of the 'optimiwion problem
anociated with stp thrm of ou design proem. Sinm the specific optimiza-
non oe mig choose to undetake is dependent on the physical system

. unde study and its apvpicasion th dedeopmem in this section concentrates
- on the interface bawee our theory and the optimization process, without

going into specific.
Finally, Scano 12, is devoted to an historic overview of the theory and

.a a discussion of the various Sinwioaz and emnson which thus far
have been formulated.

Our systm will be described by a rational function

- ~i) -- (1.1)
q(S)

Such a system is said to be stb/e if its poles lie in the (srict) left half-plane.
Since the point at infinity is taken to lie on the imaginary axis this implies

. that r(,) is stable if and only if it is a proper rational function and q(s) is a
(strictly) Hurwiz polynomiaL

Afrectional repomirarion for r(s) is a facaoriation of r(s) in the form

r(s) , (L.1
d,(s)

where both n,(s) and d,(s) are stable and d,(j) I 0. If one is giv a
polynomwilfractionel eprmmation for r($) such as in equation 1.1 then
one can take

ns) M (S)1.3)

and q,(s ) (1..4)

d,(s) Vs)

where m (s) is any Hurwitz polynomial such that the order of m(s) Quals
the order of r(s) verifying the existence of the required fractional represen-
tation I I I].

We say that the fractional representation r(s) - n,(s)ld,(s) is copime
if there exist stable rational functions, u,(s) and u,(s), such that

u,(s)n,(s) + u,(s)d,(s) - I (1.5)

4
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Recall that for polynomials 1.5 is equivalent to the requirement that n,(s)
and d,(s) do not have any common zeros 12). In our case, however, where
we are dealing with stable rational functions, Equation 1.5 imples that n,(s)
and d,(s) have no common (dosed) right half-plane zeros and conversely
(4,11]. Although this represent a departure from dassicl control theory
only right half-plane zeros cause instability and, as such, it is aprpniast
that only right half-plane pole zero cancellations be forbidden.

Unlike the classical polynomial fractional representation theory wherein
the units are the constant functions in our theory the units are the miniph te
rational functions which are stable and admit a stable inverse. That is, if

* r(s) = p(s) q(s) then p(s) and q(s) are both Huwitz polynomials of the
same order. As such, the classical theorems for polynomial fractional
representations may be reformulated'in our settiag with the units taken to
be miniphase rational functions as follows.

1. Property. Let r(s) = n,(s) Id,(s) be coprime fractional representation
.• for r(s) and assume that n,(s) and d,(s) admit a common divisor, k(s).

such tha

d,(s) - y,(s)k(s)

* and
n,(s) - x,(s)lk(s)

* where y,(:). x,(s) and k(s) are stable. Then k(s) is mniiphase. That is, the
only common divisor of a coprime fractional representation is a unit.

Proof. Since d,(s) =y,(s)k(s) andn,(s) = x,()k(s) arecoprime there
Sexst stable u,(s) and v,(s) such that

I - u,(s)n,,(s) + 9,(s)d,(s) - (u,(sx,(s) + u,(s)y,(sl ]k(s) (1.6)

shawing that [u,(s)x,(s) + v,(s)y,(s)I is a stable inverse for k(s) and
hence verifying that k(s) is miniphase.

2. Property. Let r(s) - n(s) Id(s) be a fractional representation for r(s)
and let r(s) - x,(s) 1y,(r) be a coprime fractional representation for r(s).
Then there exists a stable k (s) such that

n,(s) - x,(;)k(s)

and

d,(s) - y,(s)k(s)

Proof. Given the two fractional representations let k(s) - d,(s)/Yr(s ) .
Then clearly d,(s) - y, (s)k(s) while

nd,(S) (s)d(S) (s d,(s) x,(s)kis) (1.7).- ~s =in d(s) ,,r~sds Y- )d~)

" .
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showing that k(s) is a common factor of r, (s) and d.(s). It thus remains to
verify that k(s) is stable. To this end recall that since x,(s)/y,(s) is coprime

-... there exists stable u,(s) and u,(s) such that

(U,(s)x,(s) + v,(s)Y,(s)] - ! (1.8)

hence

k(s) - drls) -( a(vS)Xz(S) + u(sl).Y,$) (n. " ,s) Y (s

' ur(s)x,(s)d,(s) + ,.(s)d,(s) w ,,,(s)rs)d,(s) + u,(s)d,(s) (G9)

u s)dr(s)

.-. "(sd + + ,(s)r - ,(s)n,(s) + ,(s)d,(s)
d,(s)

showing that k(s) is stable since we have expressed it as a sum of products
of stable rational functions.

Note that since a coprime fractional represenaion always exists [ 1] for
r(s) Property 2 implies that any pair of stable rational functions, x,(s) andV.. y,(s) can be expressed in the form x,(s) - n,(s)kC.) and y,(s) -
d,(s)k(s) where n,(s) and d,(s) are coprime stable rational functions and

.. k(s) ii stable. As such, k(s) represents a SeWtest common diubor for
x,(s) and y,(s) which is unique up to a miniphase factor via Property 1.

3. Property. Let r(s) so n, (s) /d,(s) be a coprime fractional represents-
_don for r(s). Then r(s) isisble f and only (fd,(s) Li miniphL.

Proof. If d,(s) is miniphase then l/d,(s) is stable and hence r(s), being
the product of two stable functions is stable. Conversely, if r(s) is stable
then we may express n,(s) and d,(s) in the form

n,(s) - r(s)d,(s) (1.10)

and

- d,(s) - I d,(s) (1.11)

showing that d,(s) is a common factor of the coprime rational functions
n,(s) and d,(s). As such Property I implies that d,(s) is miniphase as was
to be shown.

4. Example. Consider the rational function
.eq1

-. (S r. [ s [ ( +[(s4.)] L(s~i)J . , ,(J) (,.IZ)

(S:4) [ (-2) dr(S)
(s+2) .

6
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Now, n,(s) has zeros at -I and s cc while d,(s) has a zero ats = 2.
As such, n,(s) and d,(s) have no common right half-plane zeros thus im-
plying the existence of stable rational functions u,($) and v,(s) such that

* [u,(s)n,(s) + v,(s)d,(:)] - 1. Indeed,

L (, +2 j r (s + 2).,L(+l3 [s+2] [ (s4.2)] [(s2)]
4 .. (1.13)

- u,(s)n,(s) + u,(s)d,(S)=- I

;. - Note that unlike the case of a polynomial fractional representation the ex-
istence of common (strict) left half-plane zeros does not preclude coprime-

I%

ness. Indeed, an alternative coprime fractional representation for the above
* rational function takes the form

- ,.(:) = r1"4. 1. L (+29 J = - (1.14)
I(s2-4)J (s-2)(s+l) d'(s)

''L J~( + 2)2

where n;(s) and d;($) have a common zero at: = - 1. There are, however,
still coprime since

r16(s4.)1 (:4.1)21 + (s.213)1 (s-2)(s+])1
3 .C 1) Ls 2.J (s+1) ()2s+)

(1.15)

- u;(s)n(s) + u;(.)d,(s) = I

2. Stabilization

The basic feedback system with which we deal is shown in Figure 1.

Figure 1. Basic feedback system.

For this system the usual algebraic manipulations [8] will yield the feed-
back system gains

* '2()I l (s) h (s) J '(s)
66201 20'2

where

[0
[a7
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h10 (S) h 1' (S)1 -,P(S) 1
1 'I L2SI€(s) I +p/s)c s)

h (s) h (S) C(s) I 2.2)

2 +p(s)c(s) I +ptS)C(s)

*while

'2(s)J i h Cn(s) h,2 (S) 2() 1

where

I h. (S) h.3(0 )r hs) 2(s)-1

-. l [h (S) A 'f (s) Ji1-Ll heol() J 0

c(s) -P(s)C(r)
I +p(s)cls) I +ps)e(s)

" p(s)c(S) p(s) (2.4)

I +p(s)C(s) I p(S)c(s)

Of course, the system is said to be stable if each of the eight feedback system
pins of equations 2.1 through 2.4 is stable. Since the inpu/output *as
h , are expressed in terms of the input/plant-input gains, h,,, via equation
2.4 this will be this case if and only if the input/plant-input gains are all
stable.

For our stabilization theory we assume that a coprime fractional
representation for the plant is given in the form

(s) .)

where an (s) and d,(s) are stable, d,(s) is 'not identically zero, and there
exists stable u,(s) and , (s) such that

u0(s)n,(s) + v,(s)d(r) (2.6)

In our single-variate setting every plants admits such a representation and
hence we may assume 2.5 and 2.6 without loss of generality. Our goal is to
characterize the set of compensators, represented in the form

-" ' €~m(s} -- (.
4. ~~~C(S)- __(*7

where n, (s) and d, s) are stable and d, (s) is not identically zero, which
stabilize the feedback system. Of course, we would also like 2.7 to be a co-
prime fractional representation. Indeed, so as to prevent (right half-plane)

8.4
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, pole-zero cancellation between p (s) and c (s) we require the stronger condi-
tion that

'P p~~c(s) - (s) (2.8)
* ds(s) (.d

be a coprime fractional representation.
Substituting the fractional representations p(s) = n,(s)/d,(s) and

c(s) = nM(s) Id,(s) into 2.2 and 2.4 now yields
%d

h (s) AdCs) ,(s)dCs) -n(s) d,(s), - (,,,,,, s) a, q (,) d,,(s)d,(s) +,,(s),,,(s) d(, ()+,(),(,
,"s1 ) d,(s) +0(s) .9)

d:(s)nc(s) d,(s)d,(s)

.2(S) d,(s)d,(s) + n,(s)n,(s) d,(s)d,(s) +n, (s)x,(s)

• and

dp (s)n,(s) ii (s)d .(s)

there~ ~~ :::::] + GiS f S S

,Since the fractional rerentation for p(s)c(s) given in 2.8 is coprime
there exist stable p(s) and q(s) such that

ei p(s) (d,(s)d,(s) I + q(s) (s)n() - 1 (2.11)

hence

[p(s) -q(s) [dP(s)d,(s) I + q(s) [dP(s)d,(s) +n (s)n,()I - 1 (2.12)

showing that the fractional representation for h.,,, (s) given in 2.9 is co-
prime. As such, it follows from Property I that he,,, (s) is stable if and only
if the common denominator, [d (s)d (s) +n,(s)n,(s) I is miniphase.
Moreover, since h,,,, (s) must be stable for the feedback system to be stable

, it follows that [d,(s)dc(s) + n,(s)n,(s) I must be miniphase for the system
to be stable. Conversely, if this common denominator is miniphase the
system is clearly stable via 2.9 and 2.10. Moreover, if the common
denominator is miniphase

o• [d(s)d,(s) + n(s)n (s) [d(s)d(s)]

(2.13)

+ (d,(s)dcLs) +n,(s)n,(s)l]' [np(s)n,(s) I + 1
showing that the corresponding fractional representation for p(s)c(s) is

coprime. We have therefore proven the following.

9
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S. Property. Let p(s) = n,(s)/d,(s) be a coprime fractional
representation for p(s) and let c(s) - n,(s)/d,(s) be a fractional
representation for c(s). Then the feedback system is stable and p(s)c(s)
" (n,(s)n,(s)JI[d (s)d,($)] is coprime if and only if

*.','.[dolsld, ls) + n,,(slnls) I is mnndiphass.

Consistent with Property 5 the goal of the feedback system stabilization
problem is to charaterize the cmpenuors, C(s) - n,,s) Id(s), such that
.d,,([)d,(s)+n,(s)n(s) is miriphase given the coprime fractionad
r eresenitation

- pAS) -(2.14)

- ~Where-

S..

9(s)np() + w.(s)d - .

'for some stable u,(s) and w,(s).

Stbilizadon Theorem: For the feedback system of Figure 1 let the
plant have a coprime fractional representation as per equation 2.14 and

*._>.-.-. 2.15. Then for any stable w(s) such that w(s)n,(s) +,(s) is notd
ticll zero the compensator

CS- - w(s)d(s) + wa,(s) J ,a(_)

stabilizes the feedback system and yields a coprime fractional reprehmnts-
tion on p(s)e(s) - [n,(s)n,(s)I/Ld,,(s)d,s)). Conversely, everysuch stabilizing compamtor is of this form for some stable w(s).

Proof. According to Property 5 it suffices to characterize the class of
stable ncls) and d,(s) such that

* d,,(s)d,(s) +. av,(s)n,(s) - k(s) Mie1

where k(s) is an arbitrary miniphase function. To this end we will attempt
to compute all possible stable solutions to equation 2.16. Multiplying equa-
tion 2.15 through by k(s) yields

.4. ..
,. -... ~(klrlala(s) ]pl) -,I) ( s) + (kls) -- &I) (2.Lr7)

verifying that
nels) - k(s)u,9(s) (2.18)

and
d(s) - k(s) (s) 2.19)

are particular solutiont to equation 2.16. On the other hand

10
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d,(s) [n,.(s)r(s) + (s) [-dp(s)r(s) ] 0 (2.20)

for all stable r(s) showing that

nt(s) = -d(s)r(s) (221)

* and
d (i) = - sr~)0

- are homogeneous solutions to 2.16 for all stable r(s). It remains to show
that 2.21 and 2.22 represent all homogenedus solutions. To this end lier

* h(s) and d(s) represent arbitra, stable homoseneous solutions to 2.16.
- Thl is

-d,(sj_, (j) + x,(s)n(,) - 0 (2.23)
in which cse we will show that they take the form of 2.21 and 2.22. As a can-

didate for r(s) Iet us take r(s) -(s) / d(s) in which case we have

)- -, (a)r(a) (2.24)

vetfying 2.21 and

verifys 21. It thus eains to s ow that r(s) = - (s) Id.(s) is stable
for which we hv

,)- - (5 p(S)n,(S)+Vp(,)dp(S))

(S -. (S) -40 ), = () IOSR* p S ,' R" S ,(

Ad" d(S)a,,(S) - iM.t(s)up(S) (2.26)

showins that r(s) is stable since it is expressed as the sum of products of
stable rational functions. As such, the entire solution space for equation
2.16 takes the form

S(S) nh(s) + n(S) - -r(S)d (S) + k(s)(s) (2.27)

and

d .(s) +dc(s) .df(s) = r(s)n,(s) +k(s)v,(s) (2.28)

"..
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where k(s) is an arbitrary miniphase function and r(s) is an arbitrary
stable function.

Now, assuming that r(s) and k(s) are chosen so that d,(s) is not iden.
tically zero we obtain the desired set of compensators in the form

s ('(s)nPCS) +k(s)(s)

,[-r(s)/kJcs ) ,s) (%) dC) ]

[r(r),,k(s) ,,I(s) + w,(s) ] [ +2:]

" where w(s) m rr(s)lk(s) span the set of m e rational functions smch thet
-- (w(s) ) + o (s) ] is not ldentical zero.

In ;Aiio to givin a complete paramewlzation of the stabilzing com-.
penseton if one views w(s) rather than c(s) a the undelyg design pr -
meter for our feedback system the expressions for the various feedback
systern pins ae gretly simpflied. This foows by observing that the com-
pensator of the theorem yiels the common denominaor

.Id,(s) r(s) + aj(s)a (s)] - 1
(since we have divided k(s) out of the mprkeso for c(s)). As such, the
-- deomiats in Equatio 2.9 and 240 drop out yiding the folowing e-

prealm for the feedback sysem ins whch ae ine (amuafly fnw) In
the desig parameter w(s).

. Corolut. The feedbck sytem ind whih result from the us of the
compensator of the stabfflmlon theorem take the form

kal". ) A " V)] 
E

and

)I( nS)J -(S)*4u()d.(,) 'eS,(s)dIi) -.,o"')n,,- 1

Proof. haose rdadonships rsult Immeditely upon substituting 2.30 and
the xresdons for n,(s) and d,(s) of the theorem into equations 2.9 and
2.10.

The theorem gives a complete parameterization of the stabilizing
compensators for our feedback system modulo the requirement that
w(s)no(s) + u(s) not be identicaly zero. Needless to say, in our single-
variate case this requirement is trivially verified. Moreover,
w(s)n,(S) + u,(S) is always non-zero for some w (s) hence the existence of

ol.

, oW.
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a stabilizing compensator for any single-variate plant is guaranteed.

7. Corollary. Every single-variate plant admits a stabilizing compensator.
Proof: Consistent with the theorem it suffices to verify the existence of a
stable w(s) such that w(s) .(s) + v,(s) is not identically zero. Indeed,

* either w(s) - -or w(s) 0 suffices. If w(s) - - fails, i.e.,

de(s) = -no(s) + ur(s) a 0 (2.31)

then the coprimeness equality

1I M W~sn,(s) + v(s)dv(s) - (u,(s)+d(s)v,(s) (2.32)
- implies that u,(s) is niphase, since [u,(s) + dp(s) ] is a stable inverse for

'V(S), in which case

dr(s) -(Olnp-') + u,(s) O w(s) (2.3)
is not identically zero.
Note that the above result is contingent on the existence of a coprime frac-

* tional representation for the plant and therefore may fail in the various
generalized settings to which the theory can be extended [8). It does,
however, hold in the multvariate case wherein a coprime fractional repre-
sentation is also assured to exist [I11.

Occasionally, one desires to design a compensator which is a proper ra-
tional function; i.e., c(a) < a; rather than simply asking for a stabilizing
compensator [2. II. Now, c(s) - a.(:)/d(s) is coprime via Equation
2.30 hence n,(m) and de(m) are not both simultaneously zero. On the

.,other handnr(m) < since n.(s) is stable hence
C(M.) =f ne(M} €.. dy < m(2.34)

e ifand onlyif d,() = w(m)n(la) + (m) 9 O. Ofcourse, inthiscase
w(s)no (s) + v,(s) is not identically zero showing that the proper stabiliz-
ing compensators take the form

C(S) = -w(S)d,(s)+i(s) (2.35)
w(s)n,(s) + v,(s)

where w(s) is stable and

w(m6)n (40) +,V (0) 0 0 (2.36)

We may now consider two cases. First, if the plant is strictly proper,
p(m) - 0, then n,,(m) 0 Oand since n,(s) and v,(s) are coprime via2.15

* implies that uv,(a) id 0. As such, 2.36 is satisfied for all stable w(s). On
the other hand, if the plant is not strictly proper, p(m) i 0, then n,,(G) ,

0 in which case 2.36 reduces to w(w) 0 - v,(m)In,(oo). We have thus
verified the following corollaries IL10, 11).
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8$. Coroll . If p(s) is rtrictly proper then the set of compenazors given

by the theorem are al proper and well defined for every stable w($).

9. Corollary. If p(s) is not strictly proper then the compensators given by
the theorem are well defined and proper if and only if

;el w(m.) - - v(0 ' )

a,( a)-- 0-

.lHuy, naer than simply looking for a proper compensator we may
desre to design a stable.compmnsa or [25]. Although such a compensator
does not, general edit, a criterion for the exitence of a stable stabilizng
m . I.-ompenat-r and an alorithm for its construction is given in Section 10 as a

corollary to th simultaneous stabiiusion theorem. Th result is, however,
far from elementary and no j a rization of the space of such compen-

-. saors is known 1171. _

10. Example. For the plant of Example 4 with the coprime fractional
* • representation of of Equations 1.12 and 1.13 the required set of stabilizing

compensators take the form
* r (s-2) 1 ni

-w(+} (s+2) J .3J
C(S) - ]0..327)

L (s+2$ (j+2)

(M) M --1-40) + 1T 4C so CL.
03

verifying that the resultant compensator is, indeed, proper given a strictly
proper plant.

Now, let us repeat the above eample using the alternatve coprime frac-
tional representation of Equation 1.14 and 1.15 which yields

-o($) (2)(s+1) r (s+2)1

w L (s + 2)2 J ) T

] +i" (+21)

a-.
(s+ )) (SI) 1

WS (s+2)2 ii si i 3

* - (s+ 1 . .. .r (S+.1) + (s.+.2/3)

. , ',; 7. .. 2 (s+2)

14
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-W'(S) 3+ I[2..]
(s+2)

r (s+ 1) 1 (S+2/3)

where
Wo S)F W()1-- W.$)m ($ L(#4"2)2J (L

As such, the same set of compensators are obtained from the alternative
coprime fractional representation as from the original representation
though the paraeterizatons defned differ by the miniphase factor
((s+ 1)21 ( (s+ 2].

* Fnaly, let us set w'(s) m 0 in 2.39 obtaining the compensator

9(r+2)
C(S) 0-+ ) .41)

Now, c(s) has a zeroat s -2 which cancels the pole ofp(s) ats - -2.
This does not, however, coisradlet the requirement that p(s)c(s) =

* [In (S)nC(S)b/[d(s)d(s)) be coprisne since our coprimeness concept
y forbids right bait-plane pole-zero cmaeilatons. Of course, a left hail-

. plane pole-zero cancellation such as encountered in the above example is
benign and need not be forbidden.

3. Tracking
Once we have stabilized our feedback system we may use the remaining
design latitude, the choice of a stable w(s), to meet various system design
constraints. The first of several such design constraints which we will con-
sider are the asymptotic tracking and disturbance rejection conditions
wherein we require that the system asymptotically follow or reject 'a

* prescribed input 141.
In the tracking (or asymptotic replor) problem it is desired to design a

stable feedback system whose output, v2, asymptotically follows a pre-
scribed input which we model by the impulse response of a transfer function
i(s), as illustrated in Figure 2. As usual we assume that t(s) admits a

5 I($) " ~ C(S) PI + *~P(S)

Figure 2. Feedback system with trackins generator.

15
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coprume fractional representation in the form
n,(s)(3)

I(s) - R() (3.1)

where tam aist me u,(s) and uc(s) such ta

+ u,(s)d,(s) - 1 0.2)
We my that the .am tree te lpp rmWom q t(s) if

*i(g) - (S)I() - h10 (s)t(s) (.3)

is stable. Dtmil that the impulse respouse of a .sige-variate systan is
uymptoic to Zeo if and only if the .edg transfer function is
stable. Thus the response of our system to the impulse response of t(s) win
be asymptotic to the impulse response of t(s) if and only if the transfer of
equation 3.2 is stable.

Real from Corollary 6 that -

' (s) " ,,,(s)as)d,(,) + wO(s), G.4

hence If we desie to stabilize the system and simulaously cause it to uck
the impulse rsponm of I(s) we must choose a stable w(s) such that
w (s) + u , (s) is not identically wo and

"." '(s)i(s) - w ")dO(s) + 5t(s)d(s) )

is gable.

I. Prepety. Given p(s) de aim aompesator for the feedback
-.symm of Pigpr 2 wh ch stabilizes th sysm and dmultmusly causes I
to track the impuulse response of t(s) If and only if the equation

w()n ,(s) x(s)d,(s) , M,(5)%,() -1

admits stable solutions w(s) and x(s) such that w(s)NP(s) + ,,(s) is not
idenically mo. In this case the required compensator takes the form

W(s)d,(S) + U,(s)
1 (u(S)aRWS) +Va)

where w(s) is a solution to the above equation.

Proof. If th eres a stable w(s) such that 3.5 is stable then Is follows
f-. rom 3.2 that

tw(s),(s)d,(s) +!,(s)d

16
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= [w(s)n (s)d (s) + v,(s)d(s) [u,(s)n,(s) + u,(s)d,(s) I
d,(s) 

(3.

-[w(s)axsd()u(sd()f~) us w:(s)d (s) + sd()ls

- -x(s)

* _ is stable since is is expressed as the sum of products of stable functions. Re-

arranging 3.6 and invoking 2.15 then yields

w(,)n,()d,(s) +x(s)d,(s) - -U(s)d(s) - u,(s).p(s)n - (3.7)

as required. Conversely, if 3.7 admits stable solutions, w(s) and x(s),
where w(s)n,(s) + v,(s) is not identically zero we define c(s) by

c s - -w(s)d,(s) ars)
[w(s)n,(s) +,U(s)-

using the w(s) of 3.7. Now, with this w(s) 3.7 and 3.5 imply that

[w(s) af(s) + u,(,)d,(s) ]a,(s)• .. 1 (s)r(s) - d,(s)

0.9)

;. . -x(s)d,(s) In,(s)

d,(s) -x(s)n(s)

is stable. Since the stabilization theorem implies that any c(s) in the form of
S3.8 stabilizes the system while 3.9 implies thazt4,,,(x)(s) is stable for this

choice of w(s) we have constructed the desired compensator.

Tracking Theorem: Givenp(s) there exists a compensator for the feed-
back system of Figure 2 which stabilizes the system and simultaneously
causes it to track the impulse response of t(s) if and only if n (s) and
d, (s) are coprime. In this case let up, (s) and v, (s) be stable functions
such that

u,(S)np(s) +u,,(s)d,(s) = i

and let a(s) = n,(s)/d,(s) be a coprime fractional representation of
a(s) - d.(s)/d, (). Then the desired set of compensators take the form

C(S) [- w(s)d,(s) + ,(s))
[(S) R,(S) +u v(S))

where

w(s) = -up,(s)u,(s) +e(s)d,(s)

17
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with e(s) an arbitrary stable function such that w(s)n (s) + v (s) is not

identically zero.

Proof. Consistent with Property 11. it suffices to show that the equation
w(s) ,(s)ds +x(s)d,(s) - i,(s)n(s) - 1 0.30)

admits stable solutions w() and x(j) such that w(s)n,(s) + v (s) is not

identically zro if ad only if n,(s) and d,(s) are coprime. In is can we
then show that the appropriaze w(s) takes the form

w(s) - -sUt(s)vP(s) +e(s)de($) .11)
• ~for any stable e(s).

If 3.10 admits stable solutions w(s) and x(s) then it follows from 3.10

-. v(s)x(s) - w(s)nosld(s) -x(s)dC() - 1 0.12)

or equivalently

[u,(s) - w(s)d,(s) 1a,(s) + I-x() d,(s) -1 0.13)

showing that n,(:) and d,(s) e coprim. Convsely, if a(s) and dt(s) are
coprime there edsts u,,(s) and u,(s) such that

.,'u,,C)a() +woms)d,(s) - I - 0.14)

" from which it folows that
* *~~~ u(a()-I - -vvCs)d(t

, - ,, [- (uuPl)n(s) ]u1lsd 1s)+-(s) plsld~(s) ] .1)

-? - -M~(sv~(a)a~(s~,v(s) + (-w()v,,()d()d()
As such,

WO(S) - N (I)V (3~) .16)

and

x'(s) - -u "(S)Uv(S)dO(S) 0.17)

represent particular solutions to 3.10.
To construct homogneous solutions 3.10 we define a transfer function

a(s) by a(s) - dp(s)/d,(s) and let

**a(s) as ,(S) 1)7, -(s)lS

be a coprime fractional representation for a(s). It then follows from Pro-
perty 2 that there exists a stable k(s) such that

18
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d (s) - n,(s)k(s) (3.19)

and

d,(s) - d,(s)k(s) (3.20)

Thus if we defime candidates for the homogeneous solutionion of 3.10 by

: w(s) - e(s)d,(s) 0.21)

. and

xA(s) - -e(s)n,(s)n(s) 0.22)

where e(s) is an arbitrary stable rational function we have

wh(s)n,(s)d,(s) +x"(s)d,(s)
(3.23)

= e(s)d(s)n,(s)n*(s)E(s) -e(s)n,(s)n(s)d,(s)k(s) = 0

verifying that 3.21 and 3.22 are, indeed, homogeneous solutions.

To complete the solution of 3.10 we must show that all homogeneous
solutions are of the form 3.21 and 3.22. To this end assume that WA (s) and
ZA (s) are stable and satisfy

w , (s).s)d.(s +1h(s)d,(s) 0 0 - (3.24)

and define e(s) by

* e(s) =0M*(s) (.2)

Clearly,

w-(s) - e(s)d,(s) (.26)

while it follows from 3.24 that

• i~s) - ?wh(s)a,(s)d(s-. x(S) =- d,(s) = S -wk(s)n e(s)

(0.27)

- - d?(s)fU)l(s) -- e(s)np(s)n,(s)

showing that wh (s) and x (s) have the form of 3.21 and 3.22. It remains,
however, to verify that e(s) is stable for which purpose we invoke equations
3.14 and the coprimeness of n.(s) and d,(s) from which it follows that
there exists stable u, (s) and v, (s) such that

u, (s)n,(s) +u,(s)d,(s) -1 (3.28)

19
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As such,

+ wh(s) r~(s)1
u s)- -- *--.) u0sn (u*sn()u*Sd()

= +w)~*((s)s'a*

-Vd*(a)(s) 4 Wh (S)
:4" (,),,dr i )

! :- ." L W (S(t(S + -b S V, s
V - ~ )d(s!1,W )n) + (s ) u, (s) )

- h sd~(s ) 9(s)u.(s)p(:)v,,(s) W4(s),.(s)

- -_2(S)M,(S)u,(S) + _h(S)u,(S)dV(:)v(S) +.-(h(s)_.,(S)

J is stable since we have expressed it as the sum of produats of stable func-
tions. Note, the last equality in 3.29 follows from 3.24.

The solution space for Equation 3.10 thus takes the form
w(s) = - uM(s)v,(s) + e(s*d,(s) 0.30)

and
x(s) - -,( S)u(:)dp,() -#(S)R*a)l*(s) O.31)

As such, Property 11 implies that if the w(s) of Equation 3.30 is used to
define a stabilizing compensator as per the stabilization theorem it will also
cause the system to track the impulse response of T(s). Of course, we must
also assume that e(s) is chosen so that 1,(s)no(s) + v (s) is not identically
zero. To complete our proof that the coprimeness of'n,(s) and d,(s) is a
sufficient condition for the solution of the tracking problem it thus suffices
to show that there exists at least one choice of e(s) such that
w(s)n(s) + u.(s) is not identically zero. From 3.30 it follows that

w(S)ap(s) +u,(s) - [-u,,S)a,(s) +Jl?(s) +e(s)d,(S)np(s) 0.32)

Now, d*(s) is not identically zero since it is the denominator of v(s). As
such, if n,(s) is not identically zero it follows from 3.32 that the value of
w(s)n,(s) + u.(s) is a non-trivial function of a(s) and is therefore not
identical to zero for all e(s). On the other hand if n.(s) w 0 then 2.15 im-
plies that u.(s) is miniphase which, in turn, implies that w(s)n,(s) + v (s)
-- v,(s) is not identically zero. Our proof is therefore complete.

Although the proof of our theorem is long, though elementary, the basic

20
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result to the effect that a compensator exists which will simultaneously
stabilize the system and cause it to track the impulse of t(s) if and only if
no(s) and d,(s) are coprime is simple to check (no common right half-plane
zeros). Moreover, the construction of the required compensator is simply a
matter of substitution as per the following example.

12. Example. Consider the problem of designing a compensator for the
plant of Examples 4 and 10 so that the system is stable and asymptotically
tracks a step function. Recall that

[ 1'' I I ' __"*__ -

S(S) (sI) + - n(S) (3.33)
S(-4) (s- 2)] d,(s)

where -(s+2)J

16 [ (s+l) 1 + (s+213 lF L(-)J

3 1(s+2)2J (s+2) (s+2 '~.,,s+ ,(s)s (.4

While we take t(s) = I/s from which we obtain

f~s) _ (s+2 ) n,(S)(3)tl0) S - - -- (3.3S)

Now, nP(s) has no right half-plane zeros while d,(s) has a right half-plane
zero at s - 0. As such, nP(s) and d,(s) are coprime and according to the
theorem the desired compensator exists. Indeed,

[4~ 1 + [ s Fsl usns ,,sd) 1(-6
L(s+2)2 L)s+2)J [ J( )+v.(s)d(*)- 1(3

As a final step in the construction of our compensator we let

[(s-2) 1
P(s) - - (s+2) (3.37)

d, 1s do(s)
L(s+2)J

which is coprime since

[- 2 +[21 2 - U(s)n*(s) +u,(s)d(s) (3.38)

21
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It thus follows from the theorem that the desired w(s) takes the form

werew(s ) - s s ) + e[s'd3s) -- s 1( s) (3.39)"" L- (s+2) (s)(
,-.-.where e(s) is an arbitrary stable function. Substitution of any such
..... w(s) into

I- wsd((s - 2). ()
• w(nP1() + UP1s) I

thus defes the required ompensatr so lon as e(s) is cosen so that
W (s)nP(S) + u-(S) is not identicaly -To'veify our solution we may
substitute w(s) into the formula for we,,, (s ) of Corollary 6 obtaining

.. ,el, (S) = (s(s-2)(r+23) + +(s-2)e(s) 1 0.41

(s+2)4)

Since At (s) has a zero at s 0 the required tracking property may now be
mverifed by the finvavlue theorem.

Nsow let us consider an alternative problem where we are required to
cnstrack 0 U (t). Here our tracking generator is defined oa

s2)

I I":":: '- ) L(j- 2) n " ("
t ~.) 0 .42)

"-"" As before n,(s) and d,(s) are €oprime since s

L(s+ 1) ] + L[(s' L[0+)]
l~Fnally, for this eample we have

-'-'r ('- 2)"
< ,a (S) L (s+0 ' 2)]
:;.:... ~~d,(s) ,s)(.)

($+2)J

"." "-"whe

i:,(0 [o1] + x [1] - ,os),,) +,,(s)d, Cs) I (3.4S)
Note that in this example d,, (s) and d, (j) are not €oprime since they haveai~l common right half-plane zero at s - 2. For our purposes, however, all that

, q is required is a coprime fractional representation for a (s) -d o (s)/Id, (s) as

constructed above. Using these new values for u (s) and d, (s) we obtain

• "2,.'-. 22
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[16(S+2/3)1

WLS 3(S+2) j+ e (s) (3.460

for any stable e(s). This, in turn, yields

- 2 J(9s3 -6s2-20s-8) + 9(s+1)(s +2)e(s)) (3.47)

for which the ze:o at s = 2 indicates tracking. Note that every stable w(s) is
obtained for some e(s) and hence all stabilizing compensators track
e2 'U (1) in this example.

4. Disturbance rejection

O - There are two alternative disturbance rejection problems which arise
- . naturally in our feedback system theory. Figure 3a indicates the configura-

tion for the input disturbance rejection problem (16] wherein we desire to
design a compensator which simultaneously stabilizes the system and causes
it to asymptotically reject the impulse response of r(s), i.e., the response of
the system to the impulse response of r(s) should be asymptotic to zero.

b)

* Figure 3. Feedback system configuration for a) the input disturbance rejection prob-
blem, b) the output disturbance rejection problem, and c) a modified configuration
for the output disturbance rejection problem.
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A similar output disturbance rejection problem (41 is illustrated in
Figure 3b. Here, the distrubance is injected into the system at the plant out-
put and, as before, it is desired to design a compensator which simul-
taneously stabilizes the system and causes it to asymptotically reject the im-
pulse response of r(s). Surprisingly, however, the output disturbance rejec.ndon problem i completely equivalent to the tracking problem considred in
the previous section. To see this simply observe that the block diagram of

Figure 3c is equivalent to that of Figure 3b. As such, if we design a compen-
sator to stabilize the system and cause the planr output to asymptotically
track the impulse response of - r(s) when the impulse response of r(s) is
added to the plant output the total effect of the disturbance observed at V2

will be asymptotic to zero. Consistent with the above we give no further
-- , consideration to the output disturbance rejection problem since it may be

L resolved via the techniques of the previous section with t(s) - -r(s). In-
deed, one can solve the tracking and output rejection problem

-. , simultaneously by working with tracking generator t(s) - r(s).
For the input disturbance rejection problem we require that the impulse

response of
"..,k,.?,(s)Iis) - [- w(s)n,(s)dp(s) +aa,(S)nW ]t(s) (4.1)

be asymptotic to zero. Hence to simultaneously stabilie the feedback
system and cause it to asymptotically reject the impulse response of r(s) we
must choose a stable w(s) such that w(s)n(s) +u (s) is not identically
zero and h, s (s)r(s) is stable. The required theory [103 is essentially iden-
tild to that used to solve the tracking problem and hence we simply state
the pertinent theorems without proof. For this we let r(s) - n,(s) Id,(s) be
a coprime fractional represenation for r(s).

13. Propery. Given p(s) there exists- a compensator for the feedback
system of Figure 3a which stabilizes the system and simultaneously causes it
to reject the impulse response of r($) if and only if the equation

w(s)xa,(s)d,(s) + y(s)d,(s) - USROS

admits stable solutions w(s) and y(s) such that w(s)n(s) + V(s) is not.
identically zero. In this case the required compensator takes the form

c...) - [w(s)dp(s) +U.(S)]
[w(S),V +(s) +v.(S)

where w(s) is a solution to the above equation.

Disturbance Rejection Theorem. Given p(s) there exists a compen-
sator for the feedback system of Figure 3a which stabilizes the system

' '" and simultaneously causes it to reject the impulse response of r(s) if anod
" ."ii;'."only if d,(s) and d(s) Ire oprime. In this case let u,(s) and u, ls)

-2.
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be stable functons such that

u'(s) d(s) + v,(s)d',(s) - I

* and let b(s) - nb(s) Idb(s) be a coprime fractional representation of
b(s) - n, (s)Id,(s). Then the desired set of compemors take the form

I -w(s)dP(S) (
C(s) - ((s)+ou,(S)

where
-. w(s) - up(s)u,(s) $(s)db(s)

with f(s) an arbitrary stable function such that w(s)n.(s) + u(s) is not
identically 

zero.

14. Example. Continuing with the plant of Example 12 let us consider the
problem of designing a compensator to reject a step function, i.e.. we let

r) 1] = _(s+i2)] ,

Now, (S+2)] d~

III - + [2]1I - u,As)d,(s) + u(s)d,(s) -1 (4.3)
L t(s+2)J L L(s+2)J

* showing that d,,(s) and d,(s) are coprime, Finlly, we let

(S+)J

b (s)- = _____ . -~+)1 b (4.4)
d,(s) [ s1 db(s)

) (s+2)J
which is clearly coprime. From the theorem the required w(s) take the form

w(s) - u,(s)i,,(s) +f(s)dh(s) -3 1 S If(s) (4.S)Ei± + +2)J
* where f(s) is arbitrary stable function such that w(s)n Ps) + v (s) is not

identically zero. The use of the compensator derived from this w(s) then
results in the gains

h,, (s) L+2.
hr.01 ) ?] 13 -2( + 2) -(s -2)fs 46

0*
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and
/410101~ r + ,i r-1)+3ss+IJs 47

-- B h.,,3(s) - (s-2)4 2X _

He, the fact that h., (s) has a Wo at s a 0 indicates that the disturbance
rejection speciflcaou 1ha ben achiemvd while the fact that 1,,0, (S) has a
zrao ts -2 impli, that the sysem abo tracks ,U (t).Ths is consstet
with Example 12 for the system traks o U (1).

-. ~S Smltneus traddm and disturbance Me~cdoa

The Purpose of this seton is to combine the results of the previou two se.
- tlm by formulatC teria for the design of a compensator which

si"multneosl t te--M, muses it to track the rpul response
of t(s) and caurs it to rejf t tlm impulse response of r(s) 16. The ap-
PrOW" L f, rk system pAw is shown in Figure 4 where r(s) is
taken to be an input disturbance. Of course, an output disturbance can also
be included in the the rY smply by combining It with the tracking
generator.

B"

Figmr 4. Configuration for the simukamov tracking and disturbmnce rejection

For consistency with the previous sections we wl use the same notationwhich is reviewed as follows. Our plant is assumed to have a coprime (rac.

-ional represendon
s --- (5.I)

,.. s) - -

such that

Up (s)n0(s) + v(s)()d0(s) - 1 (s.)

while the tracking and rejection generators are characterized by coprime
fractional representations

a,(s)
- S) (5.3)

d,(S)

- " 26
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and
P(S n (S)

I)r(s) ,, - (5.4)
d,(s)

Also as in the previous sections we define a(s) and b(s) by

and d(s) n*(s)
(s) -(-$ - (5.5)

d,(s) d'(s)

:d d(') n,(s)
; ~b(s) - - (.

.d,(s) d*(s)

, where a(s) - n.(s)/n(s) and b(s) = nI(s)/d(s) are coprime in the
sense that there exists stable u,(s), v,(s), ub(s), and ub(s) such that

u,(s)n,(s)+u,(s) d,(s) - 1 (5.7)

and

U(s)nl(S)+Vb(S)db(S) - 1 (5.6)

* Moreover it follows from 5.5 and 5.6 together with property 2 that there
exists stable k(s) and r(s) such that

d,(s) - d.(s)k(s) and dr,(s) - ,,(s)k(s) (5.9)

and

0 d,(s) - da(s)m(s) avd n,(s) - nb(s)m(s) (5.10)

Finally, the coprimeness conditions for the tracking and disturbance rejec-
tion problems are characterized by

u.(s)n,(s) +u.(s)d,(s) - 1 (5.11)

* and

Y(s)d,(s) +,(s)d,(s) 1 (52)

while we will also require a coprimeness condition between d,(s) and d,(s)
which we characterize by the equation

,,(s)d,(s) + v,,(s)d,(s) - 1 (5.13)

With this review of notation in hand the required design equations for
the simultaneous tracking and disturbance rejection problem can be ob-
tained simply by combining the results of Property I I and Property 13 and
observing that both design equations must be satisfied by the same w(s)
since we desire zo construct a single compensator which simultaneously

*l solves both problems.

270 "
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* 1IS. Propery. Given p(s) there exists a compensator for the feedback
system of Figure 4 which stabilizes the system,. causes it to track the impulse.
response of t (s) and simultaneously causes it to reject the impulse response
of r(s) if and only ithe pair of equations

w~s~a~(s+d(s)4.I)d,(S) = UPW(S~)n)-

and

admit stable solutions w(s),x(s), andy(s) such that w(s)n,(s) +V,(S) is.
not identically zero. In this case the required comnpensaory takes the form

-(S [- W()d 9(S) + u,(S)

c*(s) + -S

where w(s) is a solution to the above equations.

SlausaneusTracidag a"d Disturbance ReJection Tbeorem. Given
p(s) there exists a compensator for the feedback system of Figure 4
which stabilizes the system,. causes It to track the impulse response of
I (s) and simultaneously causes it to reject the impulse response of rus) if
and only if-

0) n C (s) and d (s) are coprmse,
(HI) .As) and ,(s) are coprimne, and
0i) 71(s) and d,(s) are copchm

In that caetedsrd set. of compensatiors take the form
c (s) - W(S)dp(s) + WPMi I
C(S)a(s +aeS

where

W(S) - (ai,(S)u,(:)UI,(:)d,(S) -arSt,(s) uj(s)d,(:) I 4.g(s)d,(s)d,(s)

-.. 1

with s (s) an arbitrary stabl function such that w(s) n.(s) + up(s) is not
identically zer.

Proof. The fact that ne(s) and d,(s) must be coprime follows from the
tracking theorem while the fact that dv (s) and d,(s) must be coprime follows
from the disturbance rejectio theorem To verify that d, Cs) and d,(s) must
also be coprime for simultaneous stabilization we subtract the two design
equations of Property 1S obtainng

Lv(s)Jd,(s) + I-r:)Jd,(s) - 1 (5.14

Conversely, to show that the three coprineness conditions are also suffi-
cient we must construct a w(s) which simultaneously satisfies the criteria for
tracking and disturbance rejections derived in the preceeding sections.
Upon invoking the reslts of the tracking and disturbance rejection

3-2&
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-- theorems we must therefore solve

-uP(s)L(s) +e(s)d(s) - w(s) = u,(s)u,(s) +f(s)db(s) (5.15)

for stable e(s),f(s), and w(s). Since the required set of stable w(s) may be ob-
mined by substitution once e(s) andf(s) have been parameterized our main
problem is to characterize the stable solutions of

e(s)d*(s) -f(s)db(s) - (up(s)up(s) + up(s)vp(s)] (5.16)

To obtain a particular solution for 5.16 we invoke 5.9, 5.10, and 5.13
obtaining

- = (up,(s)u,(s) +u4,(s~up(s) J (u,,(s)d,(s) + v ,(s)d,(s) ]

- [u,,(s)u,(s) +ut(s)u,(s) I (u,,(s)k(s)d(s) + v,(s)m(s)db(s) I

a [(u,(s)u,(s) +u(s)u,(s)]u,(s)k(s)d.(s)

0 + [1u (s)u(s) +uM(s)v,,(s))v,,(s)m(s))db(s) (5.17)

As such, the required particular solutions take the form
0(s) = [u,,(s)u,(s) + a,,(s)v,(s) uu(s)k(s) (.1S)

and

0 /'(S) - (sAaU(s) +u,,(s)v,(S))V,(S)m"(S) (5.19)

Of course,

-(s) - Z(s)d,4(s) (5.20)

and

fP(s) - S(s)d,(s) (5.21)

represent homogeneous solutions to 5.16 for any stable g(s) since

€*(s)d,(s) -fh(s)d(s) - a(s)d,(s)d,(s) -g(s)d(s)d,(s) - 0 (5.22)

As such, our characterization of the solution space for 5. 16 will be complete
0 if we can verify that all stable homogeneous solutions to S.16 take the form

of 5.20 and 5.21 for some stable g (s). To this end let e* (s) and f* (s) be ar-
bitrary stable homogeneous solutions to 5. 16, i.e.,

2(s)do(s) -'(s)db(s) - 0 (5.23)

• Now, define g(s) by g(s) = !-O(s)Id(s) in which case

111(s) = a(s)db(s) (5.24)

29
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while 5.23 implies that
e@ (s) d, (s)

fA~g) - & g(s) d, (j)(52
* . -db(s)

showing thatchk (s) and f (s) are of the requirma form. It remains, however.
to show that S(s) is stale. Indeed,

-e(s) .Lh( ) N M S( + v s db )

db(s) db(s)

_ g(s) US,(s) +
* 4b(s)

_ mh(S)w(S). + uv(s)d,(s) + w,(s)d,(s))

O(S~us's) Ntp(5) ne(s) Pfr(S'd 1(5+
d,(s)

- .t~~ s~chcs) ubkS) U S~nbPS))S + d6 (s) d. s k s

showing that S (s) is stable since it has been expressed as the sum of prod-
ucts of stable functions. Here, Equation 5.26 was derived with the aid of
Equations 5.6, 5.8, 5.9, 5.13, and 5.23. As such, the complete set of soiu-

*tions; to S. 16 take the form

and

1(5) - Up,(s)up(s) +Ai(s)u,(s)j v,,(s)m~s) 4.(s)d,(s) (5-3)

Now, upon substituting either of these expressions into 5.15S we obtain the
desired expression for wi(s) in the form

* ~W(s) - u'(W(s) 4.' (suS ) +M,,(S)u,(s)u,,(s)k(s)d(s) 4.:(s)db(s)d.(S)

4.. u,(s~u(s~,,(~d,() 4 uM~) u(s~~(s~,(s - + j(s)d6(s)d,(s)

- u,(s)u,(s)u,,(S)d,(S) -U()U,(S) u,S)d,(S)I+,cs)d(s)d,(S) (5-2)

'p 30
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where S(s) is an arbitrary function.
Finally, to complete the proof that the three coprimeness conditions suffice

for simultaneous tracking and distrubance rejection we must verify that there
exists one choice of a stable s (s) such that w(s)n,(s) + v,(s) is not iden-
tically zero, Upon susbstituting 5.29 into this expression we obtain

w(s)a(s) + uP(s) - iu,,(s)u,(s)u,(s)d,(s) -u,(s),(s)v%(s)d,(s) ]n,(s)
(5.30)

* +u (s) +S(s)db,(s) d,(s) (s)

Now d,(s) and de(s) are not identically zero since they represent the
I denominators for well defined transfer functions. As such, if n (s) is not

S- identically zero 5.30 will be non-trivially dependent on g(s) andhence not
-. identically zero for every choice * I (s). On the other hand if n. (s) is iden-

' tically zero the equality u,.(s)n,(s) + v,(s)d.(s) - I implies that v,(s) is
miniphase hence

w(s)%(s) + Vo,(s) - VP (s) (5.31)

is not identically zero. Our proof is therefore complete.

Although the theorem is highly complex and, indeed, is predicated on the
equally complex theorems which preceded it, the final result is an explicit
description of the desired family of compensators. Moreover, the terms in
this expression are readily computed by solving one or more coprimeness
equation. As such, the result is easily implemented as per the following ex-
ample.

16. Example. Continuing our analysis of the plant introduced in the
previous examples we will investigate the possibility of simultaneously
tracking e21 LI (t) and rejecting U (t). Here,

* (i-2)
d,(s) - (S.32)

(s + 2)
and

*d,(s) (s2 (5.33).• (s +2)

which are clearly coprime. Indeed

[][(-l. + 2[s - ua,(s)d,(s) +v,,(s)d,(s) I (-5.34)

* As such, the required w(s) takes the form

W(s) 16 __ (sl+ ±s +4) + s (s+ 2)g (s) (S.35)

(s+2)2  3 3

31
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yielding

h".W I -19
]  L ($2  s-+- 20 (S- 2) (s + 2(s ) (5.36)

L(5+2) 5J [~ 3 3
and

S(3-2) j[
hm()- 19s25  12e r 1 23+ 32 - 112r- 14) + 9sr(s~lXt+2)Z(s)] (S

which have the required zeros at - 0 and s - 2, respe ivetY.
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FEEDBACK SYSTEM DESIGN:

The Single-Variate Case - Part II*
*R. Saeks', J. Murray', 0. Chua, PC. KarmokoliaS3,

and A. Jyer'

Summary of Part 1. The present article represents a survey of a new frequency do-
main approach to the feedback system design problem. Although the theory applies
to the general multivariate case and, in fact, much of the theory can be extended to a
general ring theoretic setting for the purpose of the present exposition we will restrict

* ourselves to the single-variate case wherein the simple algebraic nature of the new
theory is most readily apparent.

In Part I I we introduced the concept of a stable rational fractional representation
-. for a feedback system and derived an asymptotic design theory therefrom. This in-

cluded a complete parameterization for the set of compensators which stabilize the
system under appropriate tracking and/or disturbance rejection constraints.
Moreover, expressions for the feedback system gains of the resulting system which
are linear (actually affine) in the underlying design parameter are obtained. As such,
the process of choosing a specific design within this set to meet additional specifica-
tions is greatly simplified.

In Part 11 we investigate a number of these constraints. These include the robust
design problem, transfer function design, the pole placement problem, the
simultaneous design problem, and the problem of designing a stable stabilizing com-

6. Robust design

Although the design algorithms formulated in the preceeding sections
theoretically achieve the prescribed specification, in practice, they are often
inapplicable since the specified plant model, may not be exact. As such, we

* would like to formulate a design theory which is robust in the sense that the
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prescribed design specifications are achieved for any plant in a "neighbor-
hood" of the nominal plant p(s). Then. ifp(s) is a "reasonable" approx-
imation to the actual plant, our design formulated in terms of p(s) will also
work for the actual plant. Although, in practice, p (s) is not an exact model
for the plant it is reasonable to assume that C(s), r(s), and t(s) aze exact.
Indeed, c(s) is under control of the system designer while i(s) and r(s) are

-/* simply mathematicai artifices which model the signals we desire to track
and/or reject.

In various abstract control theories one can spend hours making the term
"small-perturbation" precise 1 8]. For our single-variate case, however, it

' suffices to say that A(s) = nts)/dA(s) is close to p(s) = np)(s)Id.(s) if
the coefficients of nh(s) are close to those of n,(s) and those of dA(s) are
close to those of d s). Indeed, it can be shown that this is a well defined
concept so long as both fractional representations are coprime 111,181.
Since the poles and zeros of a rational function are continuous functions of
its coefficients it then follows that a small perturbation of a miniphase func-

- " :ion is miniphase [11. That is, since both the poles and zeros of such a
function lie in the (strict) left half-plane a small perturbation of its coeffi-

- cierits will not move them to the right half-plane.
The above observation, however, is sufficient to prove that anystabiliz-

ing controller is robust. Indeed, our stabilizing controllers are designed so
that

dp(s)d,(s) + np(s)n,(s) - 1 (6.1)

As such, if the nominal plant, p(s) = n,(s) /d.(s), is replaced by the ac-
tual plant i(s) - nh(s) Idh(s) but we still use our design compensator, the
common denominator, for our feedback systems gains will become

d(sd,(s) + nk(s)nc(s) k(s) (6.2)

which is still miniphase if .(s) is close to p(s). Thus the feedback system
will still be stable even though the common denominator is no longer the
identity.

11. Property.. Every stabilizing compensator is robust.

Unlike the design of a simple stabilizing compensator wherein robustness
takes care of itself, a compensator which meets a tracking and/or distur-
bance rejection specification may fail to be robust CIII. Interestingly,
however, in our single-variate case if the coprimeness conditions required
for the existence of a solution to the tracking and/or disturbance rejection
problem are satisfied then a robust solution is guaranteed to exist though
the set of robust compensators may be a strict subset of the set of compen-
sators formulated in the previous sections.

Recall that the solution of the tracking problem requires a stabilizing
compensator such that he,,, (s)t(s) is also stabilized. Now, if we use the
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actual plant,b (s) hp (S) /, (s), rather than the nominal plant Equations
2.9 and 3.1 yield

id(s) d(s)n,(s) (6.3)
.da(s)d(s) +nsin,(s) ]d,(s)

The robust stabilization property implies that d(s)d (s) +n i (s)n, (s) is
miniphase when , (s) is close top(s) and hence 6.3 will be stable if and only
if the numerator factors in 6.3 cancel any instabilities in d,(s). Of course,
n, (s) and d, (s) are coprime implying that n, (s) will not help to cancel the
instabilities in d,(s). On the other hand we cannot use d.(s) to cancel these
instabilities since it is not known exactly:. As such, in a robust compensator.1

d,(s) must cancel any instabilities in d,(s). In our setting this reduces to the
requirement that

* dr(s) = -x(s)d(s) (6.4)

for some stable x' (s). Here, the minus sign has been assumed for nota-
tional convenience only. Of course, it follows from the stabilization
theorem that in every stabilizing compensator dr(s) takes that form

d,(s) = w(s)no(s) +v.(s) (6.5)

Upon combining 6.4 and 6.5 we thus arrive at the following design equation
for the desired robust tracker.

18. Property. Given p(s) there exists a compensator for the feedback
system of Figure 2 which robustly stabilizes the system and simultaneously
causes it to robustly track the impulse response of t(s) if and only if the

* •equation
w(s)n(s) + x' (s) d, (s) v -r(s)

admits stable solutions w(s) and x' (s) such that w(s)np+v P(s) is not
identically zero. In this case the required compensator takes the form

c(s)= l-w(s)dp, (s) +up(s)]
[ (5) np(S) + Vp (S)]

where w(s) is a solution of the above equation.
Note that if we multiply the above design equation by dp(s) we obtain

w(s) np (s)dP (s) + Ix' (s)dp(s) ]d,(s) = - L',(s)dp(s) = up(s)n(s) -1 (6.6)

* hence if w(s) satisfies the above design equation it also satisfies the design
equation of Property II with x(s) = x' (s)d,(s). As such, our compen-

sators for the robust tracking problem do, indeed, satisfy the criteria
developed in Section 3 for the tracking problem. On the other hand some
of the w'(s)'s which satisfy the design equation of Property II may fail to
satisfy the above design equation.
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To parmneterize the solution space for the robust tracking problem it suf-

fices to characterize the stable solutions of

w(s)n,(s) - x' (s)d,(s) .. (s) (6.7)

Indeed, the same coprimeness condition employed in the tracking theorem
also suffices for robust tracking even though the resultant solution space is
smaller.

Robust Tracking Theorem: Given p(s) there exists a compensator for the
feedback system of Figure 2 which robustly stabilizes the system and simul-
taneously causes it to robustly track the impulse response of t (s) if and only
f it, ,(s) and d,(s) are coprime. In this case let up,(s) and v(s) be stable
functions such that

uPI(s)nP(s) +. ,,(s)d,(s) - I

Then the desired set of compensators takes the form

c(s) - w(s)d(s) +, (s)

where

w(s) = -u,(s) L,(s) +e" (s)d,(s)

with e" (s) an arbitrary stable function such that w(s)n,(s) + v,,(s) is not
identically zero.

Proof. Since any robust tracker is also a tracker the necessity for the co-
primeness condition follows from the tracking theorem. To show that the
coprimeness condition is also sufficient we multiply the equality

(s)nP(s) + Vo(sid(s) - 1 (6.8)

by - u,(s) obtaining a particular solution to 6.7 in the form

wP(s) - -uX(s)t,'(s) 46.9)

and

x'P(s) W -vU(s)v(s) (6.10)

Similarly, the homogeneous solutions to 6.7 take the form

w(s) - e'(s)d(s) (6.11)

and

x'h(s) = -e'(s~n (s) (6.12)

As in the previous derivations one can use the coprimeness of ri,(s) and
d, (s) to verify that 6.11 and 6.12 range over all possible homogeneous solu-
tions of 6.7 as e' (s) ranges over the stable functions. The set of w(s) which
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achieves robust tracking thus takes the form

w(s) - -u,(s)yv(s)+e'(s)d(s) (6.13)

where e' (s) is an arbitrary stable function such that w(s)n. (s) + v.(s) is
not identically zero. Also as in the previous derivations one can show that a
stable e' (s) exists such that w(s)n.(s) + v.(s) is not identically zero which
completes the argument that the coprimeness condition is sufficient for
robust tracking.

If one recalls from equation 5.9 that d,(s) = k(s)da(s) for some stable
k(s) and compares 6.13 with the corresponding equation for the tracking
problem we conclude that the robust trackers correspond to the subset of all

* trackers defined by a stable function, e(s), which takes the form

e(s) = k(s)e' (s) (6.14)

As such, we can construct a family of robust trackers simply by using this
class of e(s) in the formulae derived in Section 3. Moreover, since d(s) will
be a unit if and only if do(s) and d,(s) are coprime we have the following
corollary.

19. Corollary. Every solution to the tracking problem is robust if and only
if d() and d,(s) are coprime.

It is also interesting to note that the derivation of our robust tracker is
considerably simpler than that of the (non-robust) tracker since we do have
to construct a coprime fractional representation for a(s) = d (s) Id, (s).
Indeed, since small perturbations on p(s) are assumed dgs) and d(s) will

always be coprime for some choices of,6(s) and, as such, the robust theory
cannot exploit cancellations between the nominal dP(s) and d,(s) even
though they may not be coprime.

* 20. Example. Consistent with Equation 6.14 one can construct robust
trackers for the plant

p Is= s+)] (.5

of Example 12 simply by letting e(s) = k(s)e' (s) in those examples. In the
case where we desire to track a step function d.(s) and d,(s) are coprime
via Equation 3.38 and, as such, the corollary implies that the entire set of
tracking compensators characterized by Equations 3.39 and 3.40 are robust.

On the other hand if we desire to track e2,'U (t), d () and d,(s) are no
longer coprime as per Equation 3.44. Indeed, in this case

d,(s) - 2 d.(s) = k()da(sl (6.16)
L(s+2)J
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and, as such. the substitution of 6.14 into 3.46 yields a set of robust cor-
pensators characterized by

16(s*23)k(s+2/3

where c' (s) is an arbitrary stable function.
The arguments required to design compensators for robust disturbance

rejecion and/or simultaneous robus: tracking and robust disturbance rejec-
tion follow immediately upon combining the techniques used in Sections 4
and 5 with the ideas discussed above. As such, we sill simply sketch the ideas
and state the main results. For robust disturbance rejection we require that

S)(s) - nJ(s)n(s) n,(s)(.
, -ds)d (s) .ngs)v(sd,(s)

be stable for all p(s) in a neighborhood of p(s). As with the tracking prob-
lem this will be achieved over the entire neighborhood if and only if there
exists a stable' (s) such that n,(s) - y' (s)d,(s) in which case

n(s) -w(s)dP(s) + u(s) -Y'(s)d(S) (6.19)
21. Property. Given p(s) there exists a compensator for the feedback

system of Figure 3a which robustly stabilizes the system and simultaneously
causes it to robustly reject the impulse response of r(s) if and only if the
equation

.J ., wfs)dV(S) +Y' (s)d,(s) = (I)
w'S. up (S)

admits stable solutions w(s) and y' (s) such that w(s)n.(s) + v, (s) is not
identically zero. In this case the required compensator takes the form

C(S) = !~ dP) + U(s) I

,,,S. ( ) + V"ls)

where w(s) is a solution of the above equation.

Robust Disturbance Rejecidlo Theorem: Given p(s) there exists a
compensator for the feedback system of 3a which robustly stabilizes the
system, and simultaneously causes it to robustly reect the impulse
response of r(s) if and only if dr(s) and d,(s) are cop.nme. In this case
let u,(s) and v,.(s) be stable functions such that

u,,(s)d,(s) +,(s)d,(s) I I

,' . ..
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Then the desired compensators take the form

C(S) - w(s)d,(s) +up(s)]

[w(s)n'(s) + vP(s)]

* where

w(s) - u.,,(s)u,,(s) +f (s)d,(s)

with f' (s) an arbitrary stable function such that w(s)n,(s) + v(s) is
not identically zero.

* 22. Corollay. Every solution to the disturbance rejection problem is
robust if and only if n,(s) and d,(s) are coprime.

23. Corollary. Given p(s) there exists a compensator for the feedback
system of Figure 4 which robustly stabilizes the system, causes it to robustly
track the impulse response of i(s) and simultaneously causes it to robustly
reject the impulse to r(s) if and only if the pair of equations

w (s) n,,(s) + x' (s) d,(s) v -v(s)

and
w(s)d,(s) +y'(s)d,(s) - uP(s)

admits stable solutions w(s), x(s), and y(s) such that w(s)n,(s) + v,(s) is
not identically zero. In this case the required compensators take the form

I - w(s),(s) + u(s)l
€(S) =-

Iw(s)n,(s) + vP(s)

where w(s) is a solution to the above equations.

Simultaneous Robust Tracking and Robust Disturbance Rejection
Theorem: Given p(s) there exists a compensator for the feedback
system of Figure 4 which robustly stabilizes the system, causes it to
robustly track the impulse response of t(s) and simultaneously causes it
to robustly reject the impulse response of r(s) if and only if

*(i) n (s) and d,(s) are coprime,
(ii) I's) and d,(s) are coprime, and

(iii) Zi(s) and d,(s) are coprime.
In that case the desired set of compensators take the form

C(S) - w(s)dp(s) + us(S)

w(s)n (s) + VP(s)
where

w(S) = Wup, (s)u,,(s)d,(s) - u,,(s)v, (s)v,(s)dr(s)] + ' (s)d,(s)d,(s)
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witnh (s) an arbitrary stable function such chat w(s)np (s) + up(s) is not
identically zero.

Corolar. Every solution to the simultan us tacking and disturbance
rejection problem is robust if and only if

6) d,(s) and d,(s) are coprime and
0i) ,,(s) and d,(s) are coprime.

7. Trhufer function desip

Rather than asking that a system meet a tracking or disturbance rejection
specification we may attempt to fully specify one or more of the system
gains while simultaneously stabilizing the system. For instance we may re-
quire that

h-101 CS) - h (S) (7.1)

where h(s) is a prescribed stable transfer function. Of course Corollary 2.6
implies that

h..201 (s) - -w(s)n(s)d0(s) +u'(s)n0(s) (7.2)

so that our stable design problem reduces to finding a stable w(s) such that
h(s) as -w()n (s)d~ls)4.u,(s)ap($) (7.3)

Transfer F nctIo.Design Theorem: Given p(s) * 0 there exists a
compensator for the feedback system of Figure 1 which stabilizes the
system and yields ho., (s) - h (s) for some stable h (s) if and only if

(i) n,(s) divides h(s) and
,(ii) d(s) divide [l-hs) .

Proof. If 7.3 is satisfied

h(s) - -w(s),(s)d(s)+u(s)n(s) a [-w(s)dp(s)+u,,(s)n,(s) (.4)

showing that n. (s) divides h (s). Similarly,
II - h(s) I - w(S)ive(s) dp(s) -,(s)n,(s) + I

M- w(S) np(S) do (S) +vUP(S)do (7.5)

*...* - [w(s)n~(s) .bu,'(s) ]d 1lsl

showing that d(s) divides [I - h(s) 1.
Conversely, since p(s) a O, n (s) a 0 and hence the unique candidate

for w(s) satisfying 7.3 is

S) n(s)() - (s)]
w(s) (7.6)

n,,(s) d. (s)
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which is stable under the hypothesis of the theorem. Indeed, since nP (s) and
d,(s) are coprime and both n,(S) and dp(s) are non-zero

1 vo(S) + uP(s)
*P(S) ,(s) + -(s) (7.7)

hence

w Is) ,(F ) +",(s) 1usns-])

-~, L,-(s (--4- v [s(s)"us(s-) j
W(S)- vP(S)+U(S U(s) + h (s) (7.)

- VP(S UP(S)+ P(sMS + P() I-os (s) dPs

,(s) (s) (s)
W P() S + UPS ()(7.8)

iP (S) dp(S)

which is stable since n,(s) divides h (s) and d (s) divides [I -h (s)].

Note that if p(s) is miniphase both n,(s) and d,(s) are miniphase, in
* which case the divisibility conditions of the theorem hold for all stable h (s).

25. Corollary. If p(s) is miniphase every stable h(s) can be realized as the
input-output gain of the feedback system of Figure I with a stabilizing
compensator.

Of course, one can give a similar argument for the realization of any of
* the eight feedback system gains of Corollary 6. Note, however, that the

w (s) which simultaneously stabilizes the system and achieves the prescribed
gain is unique and hence no further design latitude exists once such a gain
has been realized.

26. Example. For the plant
0

r (S+1)1
[ (s+l) 1 L (s+2)2. . n(S)

n,(s) is miniphase and thus divides every stable h(s). As such, the only
constraint on h, 2, (s) for a feedback system built around this plant is that
(s - 2)/(s + 2) divides h,, I (s). That is h,2,, (s) must be stable and have a
zero at s , 2.
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• h Of course, in applications p(s) is only an approximation to .he actual
*i plant, A(s), and, as such, it behooves us tc. investigate the degree to which

our design based on nominal plant information remains valid for the actual
Euplant. To this end we use the nominal plant model to design the compen-sator using the w(s) of Equation 7.8 and then substiute the resultant n,($)

and d,(s) into the formula for h.,. (s) given in Equazion 2.10 with the ac-tual plant model defining ni(s) and do(s). A little algebra will then yield

.. ~~ (,S)~s "A (S) s
hdA(s)d¢ (s)ng(s)n,(s)

Since [d(s)d,(s) +n(s)n,(s) I is I when,6(s) - p(s) the expression of
Equation 7.10 reduces to h.,, (s) - h(s) when A(s) - p(s). Moreover.

4i since ni(s) divides h(s) and [d (s)d,((s) +n s)]ismniphasewhen

A6(s) is close to p(s) A,,, (s) is stable when p(s), as is the feedback system
itself. Finally, since theinverse of a miniphase function is continuous in a
neighborhood of 1, /.,,, (s) is not independent of ,(s) in a neighborhood
of p(s). Thus, even though h.,. (s) is not independent of P(s) the system
is well behaved for/ (s) in a negborhood of p(s) and small changes in the
plant will manifest themselves in small changes in ,, (s).

Finally, we observe that in the process of realizing a prescribed input-
output gain exactly we have used all available design latitude. As an alter-
native one might choose to only partially specify 4,, (s). Indeed, this can
be done allowing one more freedom in the choice of w(s) and simul-

, taneously permitting the constraints on n,(s) and d.(s) to be relaxed (3].
Although such a design can be implemented by characterizing those w(s)
which achieve the prescribed partial specifications it is often more conve.
nient to reformulate the problem in an appropriate abstract ring whose
elements achieve the prescribed partial specification. In particular, the pole
placement problem can be resolved by such an approach [81. As such, we
will put off our investigation of this problem to the concluding section,
wherein it will be discussed in the context of a ring theoretic generalization

of our theory.

8. Pole placement
Although the result of the previous section yields a definitive criterion for

the exact realization of a prescribed transfer func:ion while simultaneously
stabilizing the system the resultant criterion may be too restrictive. Indeed,
for all practical purposes the transfer function design theorem requires that
p(s) be miniphase. Moreover, in the case the compensator is completely
determined by h(s) leaving no further design latitude. As such. we prefer to
work with a less restrictive pole placement problem wherein we desire to
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find a stabilizing compensator such that

h, 01(s) S) (3.1)
q(s)

where q(s) is a prescribed Hurwitz denominator polynomial and r(s) is an
arbitrary numerator polynomial which has no common factors with q(s)
and whose order is less than or equal to that of q(s) (so as to guarantee that
h.201 (s) will have no poles at infinity).

Since q(s) is Hurwitz (for stability) any common factors between r(s)
* and q(s) will be in the left half plane and, as such, they must be character-

ized by polynomial coprimeness criterion rather than our stable rational
function criterion which only characterizes common factors in the right
half-plane. As such, we will use the term polynomial coprime to distinguish
this criterion for our usual stable rational function coprimeness. Consistent
with our use of the polynomial coprimeness concept we assume that

* a'(s)o,(s)
ni(s) = rn(s) (8.2)

and

d, (s) b(s) b(s)
rn(s)

where rn(s) is a Hurwitz polynomial characterizing the poles of n,(s) and
al,(s); at (s) and bf(s) are Hurwitz polynomials characterizing the (strict)
left half-plane zeros of n,(s) and da(s), respectively; while a'(s) and b"(s)
are anti-Hurwitz polynomials characterizing the finite (closed) right half-

* plane zeros of n,(s) and d,(s), respectively. Since n,(s) and do(s) have no
poles at infinity

o (M) a o (d ) +o0(i') I8.4)

and

0 o(m) a o(b ) +o(b ) (8.5)

where o( ) denotes the order of the appropriate polynomial. Moreover,
since n (s) and d,(s) are coprime they cannot have a common zero at s = 0
and, as such, one of the inequalities, 8.4 or 8.5, must be satisfied with
equality. Indeed, if we let

k = W') + o(a) - o0(b) - o(b'); (8.6)

then either

0 (m) = o(af) +o(') o o(b') +ob) +k (8.7)
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or

o(m) - o(a') o(a) +k - o(b') + o(b') (1.8)

Using this notation we obtain the following fundamental result.

Property. Given p(s) there exists a compensator for the feedback system
of Figure i which stabilizes the system and yields h.:,,(s) - r(s)/q(s)
where q(s) is a prescribed Hurwitz polynomial, r(s) is an arbitrary
polynomial such that o(r) :5 o(q), and q(s) and r(s) are polynomial
coprime if and only if the equation

a(s)O'(s) +Ol(s)br(s) = v~s)

admits polynomial solutions, a(s) and O(s), such that
(i) 0(a) 5 0(q) +o(01) -o(m)

(ii) oo0) s o(q) +o b ) -o(m)
(iii) a(s) and 08(s) are polynomial coprime.

Proof. If there exist polynomials a(sI and (s) satisfying

N a(s)a'(s) +8(s)b'(s) - q(s) (8.9)
",,

and (i)-(iii) we define w(s) by{ (x)= m (s asp(s S~O
a(S) M (s) q(S)e(S)
q(s) b O(S) q(s) (s)

Now, q(s) and bi(s) are both Hurwitz polynomials while o(Om) :s o(qb)
via (ii) verifying that 0(s)m(s)Iq(s)bt(s) is a stable rational function.
Similarly, the fact that q(s) and a'(s) are both Hurwitz together with (i) im-
plies that a(s)m(s) /q(s)e'(s) is stable. As such, w(s) is represented as the
sum or products of stable functions and is thus stable.

Using the w(s) of 8.10 to define a compensator for our system via the
- stabilization theorem we obtain

." (r.s+ 0 (S) ~s = - (Spsd) a u(s) M (s) = (S "(s ' (S.t) +MP() s.- .()q(s)
3 s (s)m(s) a(s )m(S,) * (s5 ],j(s)d(s) + (s)n%(s)
q b(s) b $) q(s)a'(s)

0 "- (s)m(s)M,(s)d(s)u (s) a(s)m()n p(s)dk (s)v, ( )(s

I + + u(5)n (s)

q(s) qs)

[q(s) -3(s)b'(S) I7()up(s ) +o(3)of(S)d(s)Ys)
q(s) q(s)
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a (S) a,(S) a (S) a(S)_d s~ s
-n.) (sq. s + -s ,Wv)s

(s)q(s)

q ~zs(s) (8.11) s)+vpW .(S

q (s)

* To verify that this is the required transfer function we must show that r(s)
= af(s)a'(s) and q(s) are polynomial coprime and that o(r) :5 o(q).
Now, it follows from 8.4 and (i) that

o (r) - o0(a) + o(a') s o0(a) + o(m) - o(at')
(8.12)

:9 o(q) + o(a t) - o(m) + o(m) - o(at) = o (q)

verifying that hV Ws has no poles at infinity. On the other hand if r(s)=
ai(s)ar(s) and q(s) are not polynomial coprime, say they have a common
zero at s = so,, then 8.9 implies that 4 (s) b'(s) also has a zero at so,. Moreover,
since q(s) is Hurwitz, so must lie in the strict left half-plane implying that it
is actually a common Zero Of a(S) and 03(s) since the zeros of a'(s) and

* b'(s) are in the right half-plane. This is, however, impossible since af(s)
* and 0(s) are assumed to be polynomial coprime. As such, r(s) and q(s)

are polynomial coprime completing our sufficiency proof.
To verify the necessity of conditions (i)-(iii) assume that there exists a

stable w(s) such that

0 ~h,.,(s) =-w(s)np(s)dp(s)+U,,(S)n,(S) = -(.3q (s)

Now, substitution of 8.2 and 8.3 into 8.13 implies that

* (s)(s)(8.14

but since un,(s) is stable while rn(s), q(s) and af(s) are Hurwitz the anti-
Hurwitz polynomial a'(s), in 8.14 must be cancelled by a corresponding
fact or i n r (s) . As s uch 8.14 im pilies t hat there exi st s a polyno mial a (S) s uch

* that

r W) = a (s) a( (8.15

Mioreover, since u. (s) is stable and given by u. (s) =r(s) m(s)/lq(s) at (s)

o0(a) s o0(q) + o (a,) - 0 (M) (.
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verifying fi). Similarly; it follows from the equality u (S)n (s)
S sd;() W together with 8.1' and 8.15 that

[q(s) - a(sa'(s) ]m(s)
%#(s) + w(s)Ap(s) - (1.17)

As before, since v,s) + w(s)n.(s) is stable while q(s), b'(s) and m(s) are

",.i Hurwitz it follows that there exists a polynomiai O(s) such that

[q(s) -a(s)or(s)] = (s) b(s).1

*-:. which is the desired equality. Furthermore, since

(s) +w(S ) (slm(s) (1.19)
* p qq(s)bY(s)

is stable it follows that

""" o, ~ ) so(q)4.o(b')-o(m) (1.20)

verifying (ii). Finally, ifs0 were a common zero of a(s) and a(s) it would
also be a zero of r(s) = a(S)a'ts) and q(s) = a(s)a'(s) + O(s)b'(s)

., which is impossible since r(s) and q(s) are assumed to be polynomial
coprime. As such, a (s) and 0 s) are polynomial coprime verifying (iii) and
completing the proof.

Consistent with Property 27 the solution of our pole placement problem
reduces to the solution of the linear polynomial equation

.. =(s)g'(s) +O(&)b'(s) - q(s) (8.21)

- under constraints (i)-(iii) of Property 17. Now, since n(s) and d,(s) are

S"coprime they have no common right half-plane zeros hence a'(s) and b'(s)
are polynomial coprine which implies that 8.21 is soluable. It is not,

- .*. however, clear that 8.21 represents a solution satisfying constraints
(i)-(iii) of Property 27. Indeed, 8.21 represents o(q) + I equations in
o(a) +o() + 2 unknowns hence for a solution we require that

o(q)+I S o(a)+0(5)-2 (8.22)

while constraints (i) and (ii) together with 8.7 (or 8.8) imply that

o(q)+1 s to(q) o(at)-o(m) +o(q) +o(b)-o(m)] +2
(8.23)

-2o(q) -o(a') -o(bf) -k .,.2

or equivalently
.o(q) z [o'(al) .o (bl) + k]-1 (3.24)
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As such, Equation 8.24 yields a necessary and sufficient condition for the
linear equation 8.21 to be generically solvable. Indeed, the polynomial
coprimeness of ar(s) and b'(s) implies that 8.21 will always admit coprime
solutions when 8.24 is satisfied (though the equation may also admit solu-
tions which are not polynomial coprime). On the other hand if 8.24 is not

* satisfied 8.21 is generically unsolvable though it may admit solutions for
certain q (s) which lie in an appropriately lower dimensional subspace.

Finally, let us denote the integer [o(a') +o(b') + k] by i(p) and
observe that it represents the total number of (closed) right half-plane poles
and zeros of p(s). Indeed, o(a') is precisely the number of finite closed
right half-plane zeros of p(s) while o(b') is the number of finite poles of

• p(s) and k represents the number of poles or zeros at infinity (depending on
whether 8.7 or 8.8 holds). As such, ir(p) is a natural measure of the degree
to which p(s) fails to be miniphase. Consistent with the above we have
verified the following.

Pole Placement Theorem: Given p(s) there exists a compensator for
• the feedback system of Figure 1 which stabilizes the system and yields

h, 1 (S) = r(S)
q(s)

where q(s) is a prescribed Hurwitz polynomial, r(s) is an arbitrary
polynomial such that o(r) < o(q), and q(s) and r(s) are polynomial

* coprime if

o(q) Z r(p) -

Conversely, if o(q) < 7(p) - I the pole placement problem is generi-
cally unsolvable.

o Finally, we consider the problem of parameterizing the solution space for
the pole placement problem. Indeed, it follows from Property 27 that the
space of compensators which resolve the pole placement problem for a
given q(s) take the form

c(s) - - w(s)d,(s) + up(s)] (8.25)U[w(S) R;(S) + VP (s)]

where w(s) is given by 8.10 with a(s) and 0(s) chosen to satisfy 8.21 under
constraints (i)-(iii) of Property 27 together with the condition thatw(S)np(S) + t(s) is not identically zero. Now, if aP(s) and 3P(s) repre-

sent a particular solution to 8.21 it follows from the polynomial
coprimeness of a'(s) and b'(s) together with the usual arguments that the
entire solution space for 8.21 takes the form

a(s) = aD(s) +j(s)b'(s) (8.26)
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a"d O(s) - SP(s' -j(s)a'(s) (8.27)

where j(s) is an arbitrary polynomial. In our case, however, in order to
satisfy constraints 0) and (ii) of Property 27 we assume that aD(s) and
SP(s) satisfy these constraints in which case we may guarantee that a(s)
and 0(s) will also sat;sfy constraints (i) and (ii) by requiring that

o(j) s o(q) - (p) (8.2)

(which fact follows from Equation 8.7 and 8.8)4. In general, however, these
solutions may or may not be polynomial coprime. As such, we may
parameterize the solution space for the pole placement problem via:

28. Corollary. Let p(s) and q(s) be given and let aP(s) and 8O(s) be
solutions of Equation 8.21 such that o(a) :s o(q) +o(af) -b(m) and
o(0) S o(q) + o(b') - o(m). Then the set of compensators which resolve
the pole placement problem take the form

C(S) [ 2w(s)dD's) + u,(s) I

where

W (-- [A'(s) -j(s)a'(s) jm(s) [WP(S) +j(s)b'(s) Im(s). s (q(s)bt(s) I (q(s)a'(s) ]

where j(s) is an arbitrary polynomial such that o(j) s o (q) - r(p) and
j(s) is chosen so that a(s) - p(S)+j(s)b'(s) and 0(s) - SP(s)
-j(s)a'(s) are polynomial coprime and w(s)np(s) + UP(s) is not iden-
tically zero.

29. Example. Once again consider our usual example with plant

-'--(s+ 1)
p(s) - (8.29)"-'_ (s; -4)

though in this case since the formulation for the pole placement problem re-
quires that n,(s) and d (s) have a common denominator, r(s), we will
work with the fractiona representation

[ fL 1 ___ (8.30)
(ss)-4)- d F(s)

L. (s+3)2 
s
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which is coprime since

r(6  *13)1 r (s+l) 1 M sFsl ( ) 1 ( .1I - I I + ' u'

As such, for this example rn(s) = (s+3)2, a'(s) = (s+ 1), a,(s) = 1,
b1(s) = (s-+2), and b'(s) = (s-2) while 7(p) = 2. According to the
theorem we may thus realize any Hurwitz denomination of order greater
than or equal to i.

• Now, consider the case where we let q(s) = S2 +S+ I in which case we
require that

o(a) s o(q) +o(a t)-o(m) = 1 (8.32)

and

o(0) S o(q) +o(b) - o (m) = 1 (8.33)

As such, 8.21 is satisfied by

[(3s+ I)] 11 + [s] [(s-2)] = e,(s)a'(s) +O(s)b'(s) = q(s) = s2+s+ 1 (8.34)

where a (s) and 0(s) are both first order and polynomial coprime. Now, if
we take j(s) - 0 in Corollary 28 we obtain

= (s+ 3)413.s + r6s-2) (8.3S)

C~)=[(S+)(s+ ls+)1CS)=3 (s + 2)( - S3 + 2S2 + I I s+ 3) (.6

I ss+1)('+3)2  (8.36)

and

" F 3(s+l) 1 alsr)(s) (8.37)h,2M1(s) = I -=~l
.20 (S =L (S2+S+1)j q (s) (.7

as required.

9. Simultaneous stabilization

Although a robust design will remain valid under small plant perturbations
one often desires to design a compensator which will meet specifications
over a wide range of plants. Fo" instance, if the plant contains unknown or
variable ;srameters; say corresponding to temperature, altitude or load
changes; one might wish to design a compensator which meets specifica-
tions independently of the unknown parameters. Alternatively, it may be re-
quired to design a compensator for a multi-mode plant which achieves the
prescribed design specifications in each mode; say, a two speed motor. This
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problem which has received renewed attention in recent years is termed the
simultaneous design problem [7,171. In the case of the simultaneous
stabilizazion problem a complete but highly abstract theory exists.
In the present section, rather than summarizing this abstract theory, we

will restrict ourselves to the one special case for which a simple frequency
domain theory exists-the simultaneous stabilization of two plants (7].
Here, we assume that two distinct plants, A(s) 0 ,h(s), are given and we
desire to find a single compensator, c(s), which simultaneously stabilizes
both plants. We therefore assume that both A (s) and .7 (s) are characterized
by coprime fractional representations

f(s) ni(s)9
dp(s)

and

A(S) fiL(5 (.2
d6ls)

where

uA(s)n;(s) + v;(s)dj(s) - 1 (9.3)

and
uh(s)n6(s) + vA(s)di(s) - 1 (9.4)

for appropriate stable functions ut(s), vA(s). u1 (s), and uA(s).
Now it follows from the stabilization theorem that the stabilizing com-

pensators for the two plants are given by

" (-(s)d.(s) +u.(s) I
"p, (s -(9.5)

and

" [S - (s)dh (s) + vj (s) ]96.C (s) -- (9.6)
. [ Ir(s)n[(s) + UAW(s I

where i(s) and %'(s) are stable functions such that d(s)ni(s) + u;(s) and
. .,(s)nh s) + uA(s) are not identically zero. In our application, however, we
desire to construct a single compensator, c(s), for both plants and hence we
must equate 9.5 and 9.6. Recalling that the above coprime fractional
representations for the compensator are unique up to a miniphase factor

. (via Property 1) we equate the numerators and denominators of 9.5 and 9.6
modulo a miniphase factor, r(s), obtaining

; -'(s)d (s) +su(s) = (s) -(s)dg(s) +u, (s)] (9.7)
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and
iv(s)n-(s) + vh (s) = rn(s) (G'(s)nj(s) + vp(s)] (9.8)

which must be solved for stable i(s) and i(s), and miniphase r(s). Re-
arranging the above equations yields the matrix equality

r-d (s) d.,(s) 1 '(s) n(S)u(s)-u-(s) 1
L P p 3- p p(s) (S) I (s) v (

0 Solving 8.9 via Cramers rule then yields

5 (s) = (9.10)

J S [nk(s)fi(s) n[ h(s) vh(s)

m(s) [n-(s)uh(s) +d.(s)v,(s)] I

As such, we must construct a miniphase r(s) such that

(S m(s) - [ni(s)u.(s) +dh(s)v(s) ]

S(s) n(s)d(s) (9.11)

and

[n(s)u'b(s) +d(s)vb(s) ]rn(s)P(s) -- ()yj0 -i s (9.12)
[n -(s) d ,(s) - n -(S) dh(s)

*• are stable.
Since both the numerator and denominator in the above expressions are

stable i'(s) and '(s) will be stable if and only if the numerators in 9.11 and
'9.12 are chosen to cancel any right half-plane zeros in [n,(s)dA(s)
-n,(s)d(s) ]. That is, if

* n.(s,)d.(s) - n(si)d (s) - 0 (9.13)

for some right half-plane s, we must choose m (s,) such that

in(si) - [n.(s.)u.(s) +d.(s i) . VA(s)] = 0 (9.14)

and

In n(sj)uh(s,) + dh(si)v(s,)l - s,- = 0 (9.15)

While these may, at first, appear to be contradictory requirements the
validity of 9.13 and 9.14 automatically implies that of 9.15, and, as such, we
may simply define in(s,) by 9.14 at those values of s, where 9.13 holds. Al-
though this is true with complete generality to simplify our arguments we
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will assume that dhls) and d (s) are coprime; i.e., they have no common
(closed) half-plane zeros.

30. Lemm. If d-(s) and dh(s) are coptime then 9.14 and 9.15 are
uniquely satisfied byt

M (S)
[:.: ;:.dA(sj )

whenever 9.13 holds for s, in the (closed) right half-plane.

Proof. First let us show that under our coprimeness assumption both
d,1(s) and d-(s.) are non-zero. If d-(s) - 0 then 9.13 implies that
-n.(s)d.(s.) - 0 which is impossible since both ni(s) and d (s) are. % % p p -PSe

coprime with respect to d.(s). Thus, d.(s) o 0 while a similar argument
applies to dh(si). Now, substituting

di (s,).*: rn(s,) - .- '- (9.16)
' " ,dgs,)

into 9.14 together with 9.13 yields

mn(s1) - I xj(s.)u;-(s.) + dA(s.) v, (s,)I

d . g;- (s) (s dh (s, u-(s.) + d(A(s.) v. (s))

d'j(S1) dA(s) d,; s,)

d.(s) dO(si)

. -' - gs1 ) 0 (9.17)

-. ,. via 9.3. Similarly,

(gs 1) us,) + dssivs,)-
rn(sj)

n.(s.)d.(s,)u.(s.) d. (s.) do(s.) vh(s. V5 s.)

dh(s.) dh(s,) d.(s.)

d.-(s.) d-(s.)
d(s) papa pa pa dA (s,)
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= d(s.) d- (s.)

via 8.4

Note that the lemma remains valid even without the coprimeness assump-
tions on dj (s) and d6 (s) though if both of these functions have a common
right half-plane zero at si one must take me(s,) - n,(sj)u0(sj).

Consistent with the above and retaining our assumption that db(s) and
d~b (s) are coprime the resolution of our simultaneous stabilization problem
reduces to the construction of a miniphase function m (s), such that

r(s) j() (9.19)
dh (s,)

at each closed right half-plane zero of n-(s)d.(s) - n._(s)d.(s). Of course,
• since all of our rational functions have realcoefficients tte set of points

(s,m,) which we must interpolate is symmetric in the ,-nse that (.1,,ri) is
in the set whenever (si,m) is in the set where the "overbar" notation in-
dicates complex conjugation. The required miniphase interpolation lemma
was originally derived by Youla [25 ] in the context of his study of the stable
stabilization problem and is repeated here without proof.

Youla's Lemma: Let (s$,mi) be a finite symmetric set of complex
2-tuples. Then there exists a miniphase function with real coefficients which
interpolates (si,mi) if and only if the set of m, corresponding to the si lying
on the positive real axis all have the same sign.

* Note that this condition is extremely weak since we need only check si which-
are on the positive real axis. Of course, since (sim) is symmetric these m,
must be real though they need not all be of the same sign. The necessity of
the condition is clear for if two such m, were of different signs the continui-
ty of m (s) along the positive real axis would imply that m (s) had a zero on
the positive real axis and hence it would not be miniphase. The sufficiency

* of the condition which is far less obvious was verified by Youla et al. in
Reference 9.

To apply Youla's lemma to our interpolation problem we must check the
sign of d- (s.) Id. (s.) for those si which represent zeros of
n.(s)d.(s) -n. (s)d-_(s) lying.on the positive real axis (including the point
at infinity). Since we are not interested in the value of d- (s.) /d. (s.) but

* . only its sign the desired information can be obtained by looking at the zero
crossings of the functions d- (s) and d, (s) along the positive real axis. By
hypothesis these functions have no common right half-plane zeros and,
hence, as long as d (s) and d. (s) taken together have an even number of
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zeros crossing between each positive real axis zero of np(s)dp(s)
-n-(s)d-(s) the sign of d-(s)/d.(s) will remain constant at these zeros.
Finally, recognizing that the right half-plane zeros of d- (s) and d- (s) are
just the right half-plane poles of A(s) and A(s) we obtain the fJoowing
theorem [7].

Simultaneous Stabilizatlon Theorem: Let 0(s) and ,A(s) be distinct
plants with coprime fractional representations A (s) = nj (s) Id (s ) and
h(s) = n,(s) Idjs) where d,(s) and ni(s) are coprime. Then there ex-
ins a compensator which simultaneously stabilizes both plants if and
only if .(s) and A6(s) taken together have an even number of poies be-
tween every pair of positive real axis zeros of nA (s)d1 (s) -nj(s)dA(s).

The conditions for simultaneous stabilization implied by the theorem are
actually quite weak in that more often than not nj (s)dA,(s) -n(s)dh(s)
has less than two positive real axis zeros in which case the conditions of the
theorem are trivially satisfied. Although our theorem and its proof is quite
complex the resultant test for simultaneous stabilization is extremely simple

*.'.' - as illustrated by the pole-zero plots of Figure S. Here, the plot of Figure 5a
corresponds to a pair of plants which admit simultaneous stabiliza'ion since
there are an even number of poles between every pair of positive real
zeros. On the other hand the plot of Figure 5b corresponds to a pair of
plants which do not admit simultaneous stabilization since there is an odd
number of poles between one pair of zeros. Note, in both of these examples
the poles of A(s) a6d P(s) are treated together and we do not have to
distinguish between the poles of one plant and those of the other.

a)

- .-'b)

Figure S. Pole-zero plots for the simultaneous stabilization problem.

*. Example. Once again consider the plant

S(s+l) I L s+2)2 ns)

:.., I
-(S,
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and let us attempt to simultaneously stabilize this plant and

[(s+A)1

(S) (s+A) 1 (r+2) J _ drgs) (9.21)

L(s+2)J
Now,

ni(s)dh,(s) - nh (s)d(s) = (A - 2)s- (I + 2A) (9.22)
(s+2)2

has zeros at

* -(1+2.4)V S + = ) (9.2,3)
(A -2)

and s2 = c while the plants have poles at s = I and s = 2 as indicated in
Figure 6. The conditions of the theorem are therefore satisfied if s, > 2 or s,
< I. Indeed, a little algebra will reveal that

* s1 >2ifA >2 (9.24)

while

s 1 < Iif-3 <A <2 (9.25)

which correspond to the two cases in which the two plants may be
simultaneously stabilized. On the other hand

I <s 1 <2 if A < -3 (9.26)

To complete our example let us consider the case where A = 3 in which
case s, = 7 and the two plants are simultaneously stabilizable. Indeed, to
construct the required compensator we require a miniphase function, m (s),

* such that
d.A(7) 6

m(7) . - (9.27)
d-(7) s

and

= i (9.28)

Since both values are positive Youla's lemma guarantees the existence of
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such a function. Indeed,

r."']-" (S+i"5)I+.',.'." r(s) "- .)
M, (S) (9.29)

(s + 3)

suffices. Finally upon substituting this choice of m (s) into 9.11 the required
-"(s) is obtained.

Unlike our previous design problems in which a complete parameteriza-
tion of the appropriate family of compensators was obtained here we have
only given an existence criteria and specified a method for constructing one
such design when it exists. Although a family of such compensators exists
no simple parameterization by the stable function is known. Indeed, it is ap-

. parent from the abstract solution to the general simultaneous stabilization
problem of Reference 5 that no simple parameterization exists.

1 2 7

Figue 6. Positive real axis pole-zero plot for Example 31.

1-. Stale stabnlatloa

Occasionally, rather than simply designing a compensator to stabilize a
N feedback system we require that the compensator, itself, also be stable

(25 ]. Unlike the general stabilization problem for which a solution always
exists a stable stabili:ing compensator may fail to exist. Fortunately, the
problem of finding a stable stabilizing compensator is a special case of the
stimuitancous stabilization problem and, as such, we may derive criteria for
the existence of a stable stabilizing compensator from the simultaneous
stabilization theorem [7,25 .

32. Lemm. A compensator c(s) is stable if and only if it stabilizes the
zero plant (p(s) - 0).
Proof. This follows immediately from Equations 2.2 and 2.4 upon ob-

* . serving that when p(s) - 0 the only non-trivial teedback system gain is
c(s).

Consistent with the lemma the problem of finding a stable stabilizing
compensator for p(s) is equivalent to the simultaneous stabilization prob-
lem with P(s) - p(s) and (s) - 0. Thus upon letting nh(s) = nip(s),
d- (s) - d, (s), n,(s) - 0 and d.(s) - I in the simultaneous stabilization
t ~eorem we obtain the followir.g 1"7,25 b

Stable Stabilization Theorem: Given p(s) there exists a stable stabiliz-
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in& compensator for the feedback system of Figure I if and only if an
even number of poles of p(s) lie between every pair of positive real axis
zeros of p(s).

0 Of course, one can construct a stable stabilizing compensator when it exists
via the same technique used in the previous section to construct a solution to
the simultaneous stabilization problem. That is, a miniphase function which
interpolates Il/d(s) at the (closed) right half-plane zeros of p(s) is con-
structed and used in Equation 9.11 to construct the appropriate w(s). Also
as in the case of the simultaneous stabilization problem no parameterization
of the stable stabilizing compensators is known.

33. Example. Once again let us consider the plant

* p(s) = [(s 11= L:s-2'J = n(s) (01

[ (S2 -4) J (s-2)1 dr(s)

where []s+2 I

16 r (s+,) 1 + [(s+213> [4-2)] -u,(s)n,(s) + ,,(s)d,(s) - 1 (10.2)T L~s-'$-J L(s'2- j L(S+2' )

Now, the only positive real axis zero of p(s) is at s = m hence the existence
of a stable stabilizing compensator is assured. To construct the required
compensator we must find a miniphse function, r(s), such that m (cc)
l/d (cc) = 1. Clearly

rn(s) = 1 (10.3)

will suffice. Next we compute w(s) via equation 8.11 which reduces to

w(s) = m P(s)-vu(s) (10.4)
n P(s)

* for the stable stabilization problem. Substituting r(s), n,(s) and v,(s)
from 10.2 and 10.3 into 10.4 now yields

4(s+2)

3(s+1)

Finally, this value of w(s) is substituted into the compensator formula for
• this plant given in Equation 2.37. After some algebra we conclude that

(20s+8)
C(s) = (10.6)

3(s+ I)
is the required stable stabilizing compensator.
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11. Optimization of system performance

The final step in the feedback system design process is the use of any design
latitude which remains after all design constraints have been achieved to op-
timize the system performance. This may represent z classical optimal con-

%' trol type of minimization using a weighted sum of the regulation error and
the norm of the plant input or it may represent a more qualitative measure

" . of system performance; reliability, sensitivity, etc. Needless to say the
precise parameter(s) which one might desire to optimize is highly dependent
on the physical system under design and, thus. beyond the realm of the pre-
sent discussion.

Whatever parameter one chooses to optimize, the key to the optimization
process lies with the simple affine nature of the feedback system gains for-
mulated in Corollary 6. Indeed, each of these gains is affine in the design
parameter w(s). Moreover, when one includes a tracking or .disturbance re-
jection constraint ttie subset of allowed w(s) is also affine in the new design
parameter, say S (s). Since the composition of affine functions is affine the
system gains remain affine in the stable design parameter, i.e.

h(s) - x(s)gt$) +y(s) (11.)

where h(s) is the appropriate gain, x(s) and y(s) are given stable func-
tions, and g(s) is a stable design parameter. As such, the optimization of
one or more of the system gas and/or the system responses to a specified
class of inputs usually proves to be a straightforward process.

In particular, if one assumes that ILI and g, are specified stochastic pro-
cesses and desires to minimize the expected value of a weighted sum of
system responses a classical Wiener-Hopf optimization problem results
[8,23,241. Similarly, the various deterministic optimization problems one
might choose to investigate are greatly simplified by the affine nature of
10.1 which permits the norm of any system response to be expressed as a
quadratic function of x(s). As such, these problems are usually amenable
to a simple completion of the squares solution.

Rather than going through a formal optimization process at this stage the
system designer may simply choose to "optimize" some qualitative charac-
teristic of the system: say, its sensitivity. Recall that the classical Bode sen-
sitiuity measure for a feedback system is just

S(s) = (S)
I ,..p(s)c(s)

.M . ,;(.(11.2)
= w(s) p (s) d (s) -t' (s)d. (s)

% hence to minimize the sensitivity of our feedback system it suffices to make
S(s) small in some sense. To this end one may go through a formal op-
timization procedure; say, a Chebychev minimization of S(s) over a
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prescribed frequency range; or simply choose w(s) so that S has one or
more imaginary axis zeros in the prescribed frequency range. Indeed, this is
the case in the following example.

34. Example. For the plant

r(s.,.1)1

(S+(2) L ,(s) (11.3)
(s2-4) J F (s-2) 1

where [ (s2)
6 [ (s+) )1 r (s: 2) M= ,(S),n-(S) +v (S) d(s) 1 (11.4)
3 L J + L J [(s"2)]

S(s) takes the form

i(S) =W(S) F(s+2)2 2F- + '(S+2/3)1 [(s-2)
L (s22 L(s+2)j 1L (s +2) jL(s+2)J 115

[w(s) (s + 1) + (s 2 + 813s + 4/3) ] (s- 2)

(s+2)3

Now, to minimize the sensitivity of our system we will choose a stable w(s)
which will place zeros on the imaginary axis in the frequency range of in-
terest. If we take

w(s) = +s8) (11.6)
* (s+1)

it will be stable for. all choices of A and B and yield

[s2 +(A +813)s+ (B+4/3)] (s-2)$(s) = (+2 (11.7)
(s+ 2)3

which will allow us to place a pair of zeros anywhere on the complex plane.
For instance, if we let A = - 8/3 and B - - 1/3 10.7 becomes

[(s (2 + 11 (S- 2)S~)= (2)(..)(11.8)

(s+2)3

* which has zeros at. *j. Of course, by using a more complex w(s) additional
zeros can be created.

12. Historical notes, generalizations, and conclusions

Although many of the concepts described in the preceding have a long
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history in single-varia a control theory, our purpose has been to use the
single-variate case as a forum in which to survey the algebraic approach to
the feedback system design problem developed during the past few years
(4,8,11, 16,17,23,24 1. Indeed, a review of the preceding eleven sections will
reveal that, with few exceptions, our theory has been formulated with no
more complex mathematics than addition, subtraction, multiplication, and
division. As such, one should not be surprised to find that most of the
theory can be extended to the multivariate case [ 11, 16,241 while much of it
extends to the cas of a general linear system; be it time-varying, distributed
or multidimensional (4,8,10). The purpose of this concluding section is
therefore to review the results and literature pertinent tc our algebraic ap-
proach to the feedback system design problem.

',€ Although the polynomial fractional representation concept is implicit in
any single-variate system theor!' it was not adapted to the multivariate case
until the mid-sixties with the work of Rosenbrock, et al [2,15 ]. Since such a
polynomial fractional representation does not admit an obvious generaliza-
tion to the distributed case, several researchers began to search for an alter-
native during the mid-seventies, eventually settling on a fractional represen-
tationt theory, wherein, an arbitrar system is represented as the ratio of two

stable systems [4,8]. This was first used in the distributed system theory of
Calier and Desoer [4), then extended to an operator theoretic framework
[ 19], and finally to an abstract ring theoretic setting [8] in the late seven-
ties.

The starting point for our theory, however, rests with the celebrated 1976
papers of Youla, Bongiorno, and Jabr [23,241 in which a complete

parameterization of the set of stabilizing compensators for a general
multivariate system was first formulated. Of course, such parameterizations
have long been known in the single-variate case while several authors gave
alternative formulations [ 1,3,5,6,9,13,14,15,20,21 ,26 ]. Although the YBJ
theory was originally formulated using a polynomial fractional representa-
tion [23,24], it was soon discovered that the theory could be both
simplified and generalized by working with stable factors rather than
polynomial factors. This, in turn, led to both distributed [4] and ring
theoretic [81 formulations of the stabilization theorem. More recently a
global formulation of the YBJ theory has been given an algebro-geometric
setting (17].

Although the obvious motivation for formulating the feedback system
design problem in a ring theoretic setting is to permit its generalization to
muliwariate, time.Laryink, and distribuied systems, two additional benefits
have, in fact, accrued from the theory. First, the ring theoretic setting forces
one to adopt'purely algebraic arguments which are often simpler than the
analytic arguments used in the polynomial and rational function ap-
proaches. Second, rather than working with the full ring of stable systems
one can work in a subring, thereby obtaining a design theory for "strongly
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stable" systems (8]. In particular, this allows the YBJ stabilization theory
to be immediately translated into a complete paraneterization of the set of
compensators which place the poles of a feedback system in a prescribed

* . subset of the (strict) left half-plane. Indeed, the set of transfer functions
with poles in such a subset form a ring which can be used to derive an alter-
native pole placement theory simply by representing p (s) as the ratio of two
functions with poles in the prescribed subset and similarly for up(s), v, (s),
etc. Unlike the formulation of Section 8, however, one cannot precisely
specify the pole locations and multiplicities via such an approach.

* In addition to the formal stabilization theory the YBJ theory also has had
a significant impact on the "philosophy of system design *: Indeed, with the
advent of the YBJ theory the importance of parameterizing the entire
family of systems which achieve the design constraints rather than simply
specifiying a single design was made apparent. In the original papers of
Youla, Bongiorno, and Jabr the parameterization became the first step in a

* Wiener-Hopf optimization [23,24] over the set of stabilizing compen-
sators. As such, the parameterization led to an explicit description of the
constraint set for the optimization problem, thereby permitting one to carry
out an unconstrained optimization over w(s) rather than a constrained op-
timization over c(s). Of course, the YBJ philosophy has been continued
with the parameterization of the set of compensators which solve the

* various tracking and disturbance rejection problems 1)1,1 6]. Moreover, it
has since been carried over to other fields of endeavor by Youla, who has
parameterized the complete set of stochastic processes which are compatible
with observed data [22]; and by Helton, who has given a complete
parameterization of the set of impedances which are compatible with a
prescribed load [12]. This, in turn, was then employed together with a non-

* Euclidian optimization algorithm to resolve a long standing broadband
matching problem.

The tracking and disturbance rejection problems have their origins in
classical single-vairate control theory where the final value theorem is used
to formulate the required criteria. The origin of the present formulation,
however, rests with the work of Francis [ !0] who formulated a divisability
criterion for the solution of the tracking problem and the work of Callier
and Desoer [41 who first integrated the YBJ philosophy with the tracking
and disturbance rejection problem. The present formulation is, however,
based on that of Sacks and Murray (16] who derived the design equations
presented here in a general ring theoretic setting and formulated the
coprimeness criteria for the existence of a solution in a multivariable
setting.

Although robustness has been a topic of wide interest throughout control
theory over the past decade the present formulation dates only to the work
of Francis [10] in 1977 and is based on the more recent work of Francis and
Vidyasagar (I ]. To our knowledge, however, the explicit parameterization
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of the compensators which resolve the robust tracking and/or disturbance
rejections problems has not previously appeared.

Unlike the topics considered in Sections 1 through 8 which have been of
interest to control theorists for a number of years the simultaneous design
problem has only been recently formulated in an effort to develop an "Odra
robust" control theory [7,17,19]. Indeed, the solution of the two plant
problem presented here was first derived by Chua [7] and has not pre-
viously appeared in the literature while the two plant multivariate problem
has been resolved by Vidyasagar and Viswanadham [19]. At the time of
"his writing the two plant problem is the only simultaneous stabilization
problem for which an explicit frequeccy domain solution is known. Indeed,
the techniques used herein do not extend, even to the three plant case, in any
obvious manner (7]. Interestingly, however, a complete solution to the
general simultaneous stabilization problem has been given in an abstract
ailgebro-geometric setting [ 17] though no practical method for implement-
ins this theory is available. In essence, the simultaneous stabilization prob-
lem is a globalproblem in which one must characterize the properties of the
endire set of plants one desires to stabilize rather than simply give a local
pa:ameterization of the elements of that set. As such, it has been necessary
to formulate the probiem in an abstract setting wherein the easy implemen-
tability of our theory is lost.

A solution to the stable stabilization problem was first presented by
Youla, Bongiorno, and Lu [25 ], even before the publication of the YBJ
theory, though it was essentially unknown until the relationship between the
stabilization problem and the simultaneous stabilization problem was un-
covered. Unlike the remainder of our theory the solution to the two plant
simultaneous stabilization problem and the related solution ot the stable

* stabilization problem are highly pole-zero oriented and, as such, it is
unclear whether or not they admit a viable extension beyond the multi-
variable case. Interestingly, however, when the pole-zero interlacing proper-
ty of Section 10 fails, one can determine the minimum number of unstable
poles required by any stabilizing compensator simply by counting the
number of times the plant has an odd number of poles between a pair of its
positive real axis zeros (19]. Finally, we note that the "optimization" tech-
niques are matched to our theory. Indeed, the relationship between the

% stabilization theory and the Wiener-Hopf theory was invoked in the original
YBJ papers (23,24].

This jaurnal. CSSP. Vol. 1, No. 2. 1982. pages 137 to 169.
To be rigorous one must invoke some sophisticated mathematics to prove that there exists

a d s) wh:ch is coprime with d, (s) in ever- neighborhood of d,(s) [I1 1. As such. cancella.
* •'Lion cannot be guaranteed for every da(sp though some dA(s) may cancel the instabili:ies in
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x Although the theorem allows for the possibility that right half-plane zeros of p(s) are
matched by corresponding zeros in h (s) and right half-plane poles ofp(s) are matched by cor.
responding poles of I1 - hts) such matching is not robust and thus, for all practical purpose'
the transfer function design theorem requires that p(s) be miniphase.

S4 If one assumes that o(q) a r(p) - I as per the theorem then the bound o(q) - ir(p) is
gseater than or equal to - 1. n particular, this bound is equal to - I when o(q) - wr(p) - I in
which case 8.21 admits a unique solution and no design freedom is allowed.
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I- SIMULTANEOUS DESIGN OF CONTROL SYSTEMS

byI~i R. Saeks and J. Murray
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

ABSTRACT

The problem of designing a feedback controller unstable) stabilizing compensator for a given plant
which stabilizes a number of plants simultaneously is reviewed.
is discussed froem the fractional representation
point of view. An abstract solution of this gen- 2. SIMULTANEOUS STABILIZATION
eral simultaneous stabilization problem is present- AND STABLE STABILIZATION
ed, and an elementary, explicit criterion is given
for the simulteneous stabilizability of two systams. We consider the feedback system shown in Fig.
Finally, some examples and counter examples are 1; this is characterized by the connection equa-

- . presented, and some open problems are discussed. tions

I. INTRODUCTION CP U2 4

. Classically, in control theory one is given a - U - V
plant and desires to design a control system a- c "
round this plant which meets certain design spec- or C £u
ifications. In fact, however, a "real world" o P
plant is never known exactly and, as such, a rea- -
listic design must simultaneously meet specifica- "
tions over an entire range of plants which (hope- Vv. ! fully) include the actual plant. The simplest

*form of the resultant AJmZoA eu d ~~ p'wbte where
is the Aobu"X deAZ~n pswbte wherein one desires
to meet the design specifications in an c-ball QI(2.1)

J - around a prescribed nominal plant. Although this O
is satisfactory for dealing with modeling errors it -

:_ A cannot code with plants containing unknown para-
'- meters and/or plants characterized by multiple

modes of operation. For instance, the dynamics of
an airplane or rocket vary widely with altitude To describe the dynamics of the plant and
while the dynamics of an electric motor change with controller, we use the abstract fractional reore-
speed and load. To cope with these problems we sentation theory of[ 1), [Z), (3). This assumes
mutt formulate a Aimu.ntnouA de&n .heo~y in four sets
which one designs a control system to simultaneous-

ly meet specifications over a prescribed set of g = h m i J
plants. Of course, the set of plants may be taken
to be a ball in which case the classical robustness where g is a ring with identity which represents

" ""theory is replicated. Alternatively, one may the general class of systems with which we wish tO
choose to work with a set of plants in which one or work, h is a subring of q corresponding to the
more parameters vary over a prescribed range and/ stable systems in g, i is a multiplicative set
or a discrete set of plants; say, the dynamics of consisting of the elements in h which have invertS
a two speed motor in its high and low speed in g, and j is the suboroup of h which consists Of
settings. the elements of h which have inverses in h.

The purpose of this paper is to review the We assume that the plant P has a richt-coprime
- state of research on the simultaneous design prob- fractional representation

* -.. * lem including the derivation of an explicit cri-
terion of the simultanecus stabilization of two P ND

' distinct plants and an algebro-geometric solution rr

- - of the general simultaneous stabilization problem. where the coprimeness is exhibited by
It. addition, the fundamental relationship between
the simultaneous stabilization problem and the U N rV D .
Problem of designing a stable (or minimally
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and also a ief:-cozrime representation Theorem 1: paa

The set of plans sabilizable byv a comen-
with sator C is precisely the set of stable plants

transformed by left multiplica:ion by OR cQt

This can aiso be resta ec as follows: A set
t1: has been shown,[Z) that one can then find U P of plants is simultaneously s:ailizable iff
S s nn U. P lies ir, an image of the stables under left Mul-
and V so that, in addition, tipiication by some element of GLh(2).

Lh
VYU Ur . These criteria, while geomeStically appealing,can not be handled analytically; the following

This the plant P can be described by the matrix equivalent criterion is therefore useful.

-U Theorem 2: r41

Rp Let P 'be a set of plants represented by
Rp, Pt P. The the set P is slmultaneously stab-Nr VL

r L] ilizable lif there exists a family of matrices
tWP P c P. of the for (2.3) such that

The necessity of this condition is obvious
from (2.2). The sufficiency can be checked by de-

.he admissible input-output pairs(C , ) for the fining
lan: are then oescribea by p p

Rc  RW Q
pa p

R' fer any p c P, and using the condition to check
p 1€that R€ is well defined. Then (2.2) follows.

p%. Oensaoe tabiner mere y ji ning thl he zeorn
plant to he given set of plans - a comnsaor

whr 0i ido pata 1. e o h is stable if and only if it st.abilizes t.he zero

olant P. plant. Thus the stable stabilization of n plants
simult.aneously can be treated as a problem of sim-

The corresponding ma:rices for the controller ultaneously stabilizing nl plants. The converse,
will be denoted by R and S€. etc.. although less obvious, is rso true - see L.

3. THE TWO-PLAN CASE

It can then be shown r, r) that a given con-

roller C will stabilize a p:ant P if and only if The only case of which we know. in which even
the analytic criterion in section 2 can be imple-

R;a { RO tW (2.2) mented is the case of two plants. In this cast,
. cthe criterion is as follows: two plants, with rep-

.- lere 0 is the connection matrix (2.1). and W is of resentin matrices R1 and RZ, can be simultaneously
tre f on stabilize iff there exist matrices and W2 of

-, the form (2.3) suct, that"e I

[2 i(2 .3) W.e no e t a , ? *(

- We note tht, since the identity amv:rix

:-'e e :atrix is in -LZ(h) - i.e., is a 2x7 corresponds to the zero plant, tnis is equivalent
a r-, x. c e'tere-s o h wi ch has an inverse whose to the condition t at the ";'art" r ave a
ie ets are in , . 1: is easy to see that being of S.
: 'c. Z.) "s ec!ivk&ent to being an elemeni s.a-es:abiizinc compensator. (Tis is an. ex-

*' ;. wnose ,-element is en . anf tha-
"is n turn is ecuivalent to being the R-ma:rix section. 2.) For the linear time-invariant case,

~ ';' stabile systr,. Thus in terms of the R-matrix the problem has been solved by Youla 52. It is
e.resenta:ion, we can restate (2.Z) as of interest, however, to relate Youia's solution
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to our approacn. To this end, we denote R IR2 by EXAMPLES: [4)

'7D U Suppose given a family of plants of the fors
R LN V I p(s) A

-- and restrict ourselves to the scalar-input scalar- we would like to know when it is possible to stab.

output case. If we write (3.1) in the form ilize these simultaneously by use of a Proporionl
compensator with gain t. In this case the denomi-

W1 R - W 2nator of the closed-loop transfer function is

and use the fact that the (1,1)-entry in each Of d(s - S (B 1A)
the W-matrices must be in j, we get the condition: and so the d s ym w sta b• "- nd s thefeedbatck syvsten will t stable 1ff

D + TN c j for some t c h. B+Ta > 0. Thus a set of plants is simultaneously..
stabilizable iff for some t, B tA 0 for each
plant in the set. Now each plant can be represe..

In the present case, this is clearly equivalent to ed as-a point in the (A.B)-plane; in this reprse,.
requiring the existence of a stable, minimum-phase tation. a set of plants is simultaneously stabi-
transfer function which, at each closed right half- lizable iff the set lie. entirely above some

* plane zero of N, interpolates 0 to an order equal straight line through the origin. The slope of
at least to the order of the zero of N. Continuity such a line is -t, where t is the gain of a stab-
and realness of the transfer functions show that a ilizing compensator. For example, the set in
necessary condition for this is that D have -the Figure 2.b is stabilizable, while the sets in
same sign at l11 closed positive real-axis zeros of Figures 2.c and 2.d are not. Since the set of
N. Youla showed that this was also sufficient, stables in this case is the upper half-plane, this

gives a very vivid (although very special) illus-
Thus to solve the problem of simultaneously tration of theorem 1: a set of olants is .imultar.

stabilizing two plants, it remains only to express eously stabilizable iff it is contained in a ro-

N and D in terms of the original plants. An easy tated (or more accurately, sheared) version of the

calculation shows that we can take set of stables.

N a K 0 N 0 Our second example is a c-ounterexample to
2 1 1 2 the effect that even if every pair of plants in a -

set is simultaneously stabilizable, the entire set
* and 0 a ViI a 2 UIK 2 may not be. To this end, we take a set consisting

of three plants (po-Pl,p2 ); here p0 is the zero
where 

plant, and

P F ll = n11dl - P2 a n2 /d 2

[Jwhere nl, dl, nd and d are graphed in Figure 3.

rr~ u'1It is easy to see, by using Youla's criterion. that
[2 .2 p1 and P2 each have stable stabilizing compensawrs,
N V2  and by using the criterion in section 3, that p1

and p, have a simultaneous stabilizing compensator.

Thus in order for the plants to be simultan- However, there is no stable compensator which Sim-.

eousl stabilizable, it is necessary and suffic- ultaneously stabilizes p1 and n . If there were.

ient that VO0 + UN have the same sign at all then by the criterion of Theore, 2 there would be
1 a stable transfer function I such that both d1 +

ciose2 positive real-axis zeros of N1D1 - N2 1D. fn a r and d + fn z r were stable and minimum-

Some calculations involving the coprimeness con- 1 2 2 2

ditions show that this is equivalent to the con- phase. At the zeros of n1, d, ' 0 and so rI must

ditior, that D L have the same sion at all be positive on the Positive real axis. Similarly
* closed osie eal-axis zeros of'N2 DI - NID 2. r2 mast be positive on the positive real axis.

This cves a criterion in terms of the transfer- However, if we eliminate f we see that
functions the.selves 1)[C4. -

4. EXAMOLES nAdN n 1 d2 " n2r - n r2

The only case in which the geometric results and so, at the zeros of n2 d, i  n d we must have

* can be illustrated on paper is the case in wnich r r n r But at these points, n1 > 0 and
tnere are only two parameters. For this reason our '2 1 1 2'

first example will deal with this situation. n2  0, and so we get a contradiction. Thus pOPI
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compensators (or even sofe compensators) which will 4. Saeks, R., and Murray, J., "Fractional' Repre-
stabilize the set? sentation, Algebraic Geometry, and the Simul-

Problem 3: Since stabilization alone is usually taneous Stabilization Problem," unpublishedProb em : Si ce tab liza ion alo e is usullynotes, Texas Tech Univ., 180.

", - not enough, can one fine conditions for the nxis-
: --- tence of a compensator which, in addition to simul-Staneously stabilizing a set of plants,.will also 5. Youla,- D.C., Bongiorno, J.J., and C.N..Lu,

taus e stizg set o" plnts ill "Single-Loop Feedback Stabilization of Linear
cause them to satisfy some other coitions (e.g. Multivariable Dynamical Plants," Automatica,
track a specified input signal)? 10 (1974), 159-173.

5. CONCLUSIONS

We have discussed the problem of finding a
compensator which stabilizes every plant in agiven
set of plants. In the abstract, both geometric
and analytic criteria have been given for the ex-

istence of such a compensator. However, only in
very special cases, such as the case of two'plants,
can these criteria be checked. Another special
case, in which the geometric criterion becomes
particularly clear, is the case of first-order i
plents with proportional controllers. We have also
given an example where pairwise simultaneous stab-
ilizabillty of a set of plants does not imply over-
all simultaneous stabilizability. Finally, we have
indicated some directions for further research.
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Fractional Representation, Algebraic
Geometry, and the Simultaneous

Stabilization Problem
RICHARD SAEKS, FELLOW, IEEE, AND JOHN MURRAY, MEMBE IEEE

,Msea -An explicit relatiowsipi between the fractional rementtion and we desire to design a stable feedback system using a
aproac feedback systm desgn avd the algebro-eoimetric approach to proportional compensator with gain t. This results in a
sym diemn is formulated and umd to dens' a global sotion to te system with characteristic function

Sfeedback ysem Iroblem. Tbese techniques we then applied to the simul-
6 taneow stabdatio. problke . lding a natual geometic crterion for a d(s) = s + (B + UA) (1.2)

e of plants to be santtanwisly stabilizod by a siangle compensator.
O. and, as such, the feedback system will be stable if and only

I. inRODUCTION if B + tA >0. Here, for a given compensator t, the feed-
- back system will be stable if and only if the point (A. B)

C'LASSICALLY, in control theory one is given a plant lies above the line with slope 1/t as shown in Fig. I(a). As
'4.,and desires to design a control system around this such, if we want to simultaneously stabilize an entire set of
plant which meets certain design specifications. In fact, plants, their representations on the A-B plane must all lie
however, a "real world" plant is never known exactly and, above a line through the origin. For instance, the set of
as such, a realistic design must simultaneously meet specifi- plants indicated by the hatched region in Fig. l(b) can be
cations over -an entire range of plants which (hopefully) simultaneously stabilized (by a compensator with gin
include the actual plant. The simplest form of the resultant - j), while the set of plants shown in Fig. l(c) cannot be
simultaneous design problem is the robust design problem simultaneously stabl.tzed since they subtend an angle
wherein one desires to meet the design specifications in an greater than 180* on the A-B plane. Similarly, the set of
eball around a prescribed nominal plant. Although this is plants shown in Fig. l(d) cannot be simultaneously stabi-
satisfactory for dealing with modeling errors, it cannot lized since they cross the negative A axis.
cope with plants containing unknown parameters and/or The above example suggest two alternative criteria for
plants characterized by multiple modes of operation. For the simultaneous stabilization problem. One may adopt an
instance, the dynamics of an airplane or rocket vary widely algebraic criterion v: the effect that

* with altitude. while the dynamics of an electric motor B + tA >0 (1.3)
change with speed and load. To cope with these problems,
we must formulate a simultaneous design theory in which for each plant in the prescribed set and some i. While such
one designs a control system to simultaneously meet speci- a test is definitive, it is local in nature, allowing one to test
fications over a prescribed set of plants. Of course, the set for stabilizability on a plant-by-plant basis, but yielding no
of plants may be taken to be a ball, in which case the global criterion with which to characterize a set of plants

• classical robustness theory is replicated. Alternatively, one which is simultaneously stabilizable. To the contrary, one
may choose to work with a set of plants in which one or may adopt a global geometric viewpoint to the effect that a
more parameters vary over a prescribed range and/or a prescribed set of plants is simultaneously stabilizable if and
discrete set of plants, say, the dynamics of a two-speed only if it is contained in an appropriate half-plane. The
motor in its high- and low-speed settings. goal of the present paper is the formulation of a similar

The simultaneous design concept is possibly best il- geometric criterion for the simultaneous stabilization prob-
* !ustrated in the first-order case wherein a simple geometric lem applicable to general linear systems.

solution suggests itself. Assume that our plants are of the The starting point for our theory is the ring-theoretic
form fractional representation theory introduced by the authors

A in a series of recent papers [91, (161 in which the set ofp(s) = s + B compensators for a given plant are parameterized. More-

over. as a first cut at the simultaneous stabilization prob-
OManuscnpt received December 5. 1980: revised November 9. 1981 lem. one can reverse the role of the plant and compensatorPaper recommended by E. W. Kamen. Chairman of the Linear S~stems in this theory to parameterize the set of plants which are

Committee. s work was suorted in par by the Joint Services given compensator. In practice, however,
Ejectroncs Program at Texas . University under ONR Contract stabilized by a
76-C-I 136.

The authors are with the Department of Electrical Engineering. Texas one is not given a compensator a priori and, as such, we
Tech Universit). Lubbock. TX 79409 must characterize the set of plants obtained by the latter
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- \ b), I A is simply one manifestation of a family of related ap-
Sgo-.-.- proaches to the control system design problem developed

SO°." 2', i during the past half-dozen years by Pcrrebo and Astrom
-1 ,."[13], [)4]; Antsaklis. Pearson. and Cheng [']. [6]. [71; Youla.

Bongiorno. Jabr. and Lu [22]-[25): and Zames 126] among
-, others (21, [201. [211. Indeed, the approaches of these authors

are all closely related, any one of which could have been
C. IA (d) A ' used as the basis for the present investigations. In particu-

lar, the formulation of Zames is applicable in a general
ring-theoretic setting, and is essentially equivalent to that
employed herein.

Fig. 1. II. F.ACTiON.L REPRESE TATO AND THm
. GRAss WANimd

parameterization independently of the choice of compensa- The algebraic fractional representation theory is set in a
- tor. For instance, in our first-order example, the set of nest of rings, groups, and multiplicative structures:

. plants in Fig. l(a) are stabilized by a given compensator
--- with slope I/t. while a given set of plants is simultaneously ghitj.

stabilizable if and only if it lies in the half-plane above Here, g is a ring with identity which represents the general
some line throuh the oriin. For the generl problem. ts class of systems with which we wish to work: rational

is achieved by translating the fractonal representaton matrices, continuous operators, a class of transcendental
theory into an appropriate geometric setting in which the functions, etc.; and k is a subring of Z containing the
-shape" of the set of plants obtained from the latter ident which models the systems which axe stable in some
parameterization may be characterized. In turn, the simul- sense: poles, in a prescribed region. transcendental rc-
taneous stabiliation problem may be resolved by requiring tions with restricted singularities, causal operators. etc.

Sthat the given set of plants he in a reion of the p- Finally, i denotes the multiplicative set composed of ele-
propriate shape-" ments of h which admit an inverse in , while j denotes the

Indeed, the appropriate geometric setting proves to be multiplicative subgroup of i made up of elements which are
just the Grassaian first introduced into the system invertible in h. Detailed examples of this structure were
theory literature by Hmnann and Martin [I 1], [12 . Unlike givenin4and[1 and not bem

" their frequency domain formulation, however, we obtasn
the Grassmannian directly from the ring-theoretic froc- tatio in g, A, i, i) ai
tional representation previously. employed by the authors.
Indeed. the Grassmannian is obtained simply by factoring s =n,d' (2.1)
out the nonunaiqueness inherent in the fractional represen-
tation theory. As such, in addition to formulating the where n,,G h and d,,r i. Furthermore. we say that this

global theory necessary for our study of the simultaneous representation is right coprme if there exist u,, and v,, in k

stabilization problem, the geometric approach yields new such that

insiSht into the relationship between the fractional repre- u,,n,, + ,,= 1. (2.2)
sentation theory (which we identify with the elements of a
general linear group) and the system itself (which we This equality is equivalent to the classical coprimeness
identify with the elements of a Grassmannian). concept for rationa, functions and matrices, while being

In the following section, the fractional representation defLned in our general ring-theoretic setting. In particular,
tneory is reviewed and the required Grassmianian is con- if g is the ring of rational functions and h is the ring of
szructed. The resultant theory is then used to formulate a polynomials, (2.2) implies that n,, and d,, have no common
global description of the set of stabilizing compensators for zeros: and f g is the rng of rational functions and h is the
a given plant in Section I1. The resultant formulation also ring of exponentiaily stable rational functions, (W.2) implies
.ields new insight into the problem of stabilizing a plant that n,, and d,, have no common right half-plane zeros.

- with a stable ccmpensator [25] for which a necessary and Since g is. in general. noncommutative. we alsc define a
sufficient conditon is also derived in Section Ill. Finally, left fractional representation for s via the equality

0I the simultaneous stabilization problem is investigated in
Section IV wherein both global geometric and local alge- s= d'n 1  (2.3)
braic criteria for the simultaneous stabilization of a pre- for n1 G h and d5 E i. Furthermore. we sa, that this repre-

• ." scribed farifly of plants are obtained.* cie aiyo pat r band sentation is left coorlme if there exist u, and L.'1 in h such
Although the present paper is formulated in terms of the that

abstract (pseudo) coprime fractional representation theory
of [5j. [91, [10]. [16]-[19]. it should be pointed out that this nu,, - d = 1i. (4)

" ... . . . . .. .



* SAEIS AND MURRAY: SIMULTANEOUS STABILIZATION PROBLEM

Of course, in the classical case of a rational function or where o, = [d,'Ic, is an appropriate "partial state" vari-
matrix, these fractional representations are assured to exist able. As such, the 2X2 matrix R, defines a natural model
110]. However, this is not the case in the general ring-theo- for the given system. Indeed, when such a model is em-
retic setting. Therefore, for distributed. time-varying, and ployed, one can drop the invertibility requirement on d,,

* multidimensional systems, we assume that our plants admit (and d,,). although the matrix R, must still admit an
.such a representation as a prerequisite to the theory.' inverse with entries in h. 2

Interestingly. however, if such a representation exists, we Since the 2X2 matrices R, and S, have entries in h and
may, without loss of generality, choose u,, and v,, such that admit an inverse which also has entries in h, they form a
the equality group which we denote by GL,(2). i.e., the general linear

group of 2 X 2 matrices with entries in h. If the elements of
* v,,u, = ,(2.5) GLb(2) are, however, to serkve as a viable system represen-

also holds [8]. In this case, we say that the representation tation, we must be cognizant of the fact that several such
for s defined by the eighi-tuple {n,, d,,, uV,, n, matrices may represent the same plant. The appropriate

" d,,, u,, ,,) is doubly coprime and we express the defining equivalence classes may, however, be characterized with
equalities of (2.1)-(2.5) via the matrix equality R;' = S, the aid of the subgroup E C GL,(2) composed of the upper

* where triangular matrices

= [ d[ , - u.] - e,, e,] (2.11)

and in GLh(2). Note that since these triangular matrices are

0 = - (.) assumed to be in GL,(2), it follows that e , and e= are inj.
[ s us' (2.7) Property 1: Let R, and R, be in GL,( 2 ). Then R, and R,S, In. j d$1," represent the same system if and only if there exists EE E

It is interesting to compare the above formulation with such that R , = R sE.t
that proposed by Zarnes [26]. Rather than working with an Proof Tf R, = R,E for some EE, then

unstable system, s, Zames assumes that the given plant is el ol -= l -el =  2
* first stabilized via classical techniques, and then develops j R, aj RE 1 J = A =J,1 (2.12)

his design theory around the resultant stable plant 1. Now,

since I is stable, it admits the trivial right coprime represen- where 6, = el o,. As such, the set of input-output pairs
.ta, on 1 = I with the equality defined by R, coincides with those defined by R. except

for a change of parameterization.
(0][s] +[l][s] =u,,n,, + vs,di, = 1 (2.8) If R, and , define the same set of input-output pairs,

* - then for any such pair (e,, P,), there exist a, and 6, such
implying right coprimeness, while a similar equality defines that
a left coprime representation for 1. As such, the matrices
R,. and S. take on a very special form, permitting Zarnes to 'j -R~ 1  = (2.13)
implement his design theory without explicitly dealing with YJ - ,0 = 02
u's and v's nor even introducing the coprimeness concept. which in turn, im

* The key to our geometric formulation of the fractional w plies that
representation theory lies with the observation that the 6 .. E1al
2X2 matrices R, and S, constitute a natural and conciseo R RSJI Ej (2.14)
representation for the given plant which can serve in lieu of
the eight-tuple of n's. d's, u's. and v's. Indeed, if the Now. E =/R"RE GL,(2) since R, and A, are in GLh(2),
input-output relation for our system is characterized by while R = ASE by construction. As ,'ich, it suffices to show

* the equality that EE E. This, however, follows from the fact that (2.14)
holds for all o, (and a corresponding d).

, s,=[n,,d''] 1 , (2.9) Given that any two representations in GL,(2) for the

then the admissible input-output pairs [9] (c. P,) for our same system differ by a left factor in E, a natural setting
for our system theory is the quotient space GL,(2)iE.plant are parameterized by the equality
Although GL,(2) is a group and E is a subgroup. E is not

* -i 1 normal and, as such. GL,,(2)1E is not a group. For-
V,= [., vJ = R, 0 (2.10) tunately, however, the resultant coset space (of equivalence

classes) is a well-known and much studied geometric ob-

'Computationall%. the evaluation of u and v,- (or u,, and t,,) reduces
to the 'itution of a linear equation it' tie nng A In particular. if A is a 'In the case uhere iT,' does not exJst. the plant defines a relation rather
ring of stable rational functions or matrices thereof, one can multipl * \ than a (unction on the input-output space. The resultant relation is,
;.nd (- 4) l, a common denominator, and thcrebh reduce their solution to howcver, parameterized bN a,. Moreover. since R, i.s invertible, the
that of a cla.scal pol'.nomtal equation relation is normal in the same sensc of j15]
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Ject. the Grassmanuian [I] G,(l. Z), which we will adopt as 0Ie, et
the basic seting for our system theor. "  7-

Since E is not a normal subgroup of GL,(2). Gh(l.2) is 1
not a group and. as such. dxes not admit an "internal" l ( .18)
algebraic structure. The group GL,(2) does. however, act as =we, ( we e_ )
a set of transformations on G,(] ,2). Indeed. if TE GLA('.7)
-and 1U]GG(l.) is the equivalence class of UEGL,(2). showing that t, e, , j [since E is invertible in GL,(2)].
we define Conversely, if t 11 j, we may factor T via

-.. r ..

T [U][TUIG 1 ( 1, 2). (2.15) [fit ot1 ~2 Ior 1t21 t=J I 0
Now, if [U] = [V, then Property I implies that there exists t21 0 2211,: 12

Ee Esuch that V=UE; hence. (2.19)

T V]-T[UE]-[TUE]-(TU] (2.16) Since 1 =Gj. w--i:j' and 1,-zgj't 1 2 are in k..Thus,
*the unit triangular nature of W implies that it is in GL,(2).

via Property 1. As such, the operation of GL,(2) on This, in turn howeve, implies that
GA 1.2) is well defined.

- As a prerequisite to the formulation of our stabilization E=W-GGL(2) (2.20)
-theory, it is necessary to characterize the stable systems as
interpreted in GLa(2) and G(l,2). Recall that if s is stable since GL5(2) is a group. Since E is upper triangular and
(se h). then s admits the doubly copnme fractional repre- EG GL,(2), EG E. as was to be shown. U
sentation Since W and E are both groups, the equality S = WE

r 01. implies that S'=EW. Now, a little algebra similar to
R3.- R 1. (2.17) that used in the proof of Property 2 will reveal that

I I UTG-' if and only if t22Gj. Indeed. S and S are
Denoting the set of such 2 X 2 matrices by W C GL(2), it precisely the-wo classes of matrices for which the 2 X 2

* then follows from Property I that the set of all representa- matrix inversion formula is applicable [161.
tons for the stable systems in GLA(2) take the form Before concluding this section, it is instrucve to coin-

S=WE and, as such. they are represented by |S =IWIE] ment on the relationship between GL,(2) and GJ(.2). In
=[W] COG(l,2). Although Wand E are both subgroups essence, GLh(2) is a set of representations for our systems,
of GL,(2), they are not commutative and, as such, S WE while GO(l, 2) represents the set of systems- That is to say,

- is not a group. S is, however, characterized by the follow- GL,(2) is composed of the computationally tractable ob-
ing property- jects with which we actually describe a system, although

Property 2: Let many such objects may represent the same system. On the
contrary., each element of G,(1,2) is uniquely identified

" with a system, and hence we may think of G5,(1, 2) as
T t" t12 'being the set of systems" (or, at least, being in one-to-one

. 122 correspondence with the set of systems). On the other
hand, the ele-ments of G,(l.2) are not computationally

be in GLh(2). Then T S if and only if tIIEj. tractable, except through the intermediary of GL,(2). In
Proof: Since S = WE if TE 5, then T = WE for some practice, therefore, a plant is characterized by one of its

WG W and EGE; hence, representations in GL1 (2). while the goal of the system
design problem is to specify an appropriate compensator in

31f k is the field of scalars. Gb(t.2) is the classical Grassimannias (of Gk(l, 2). That is, we are designing a compensator rather
lines in -space). whereas if k is taken to be nl a matnes. G 1 . than a representation of a compensator, and hence even
reduces to the classical Grassmanman of n planes in 2n space I).
Although these classical Grassmanmans have an analvtic structure (com- though we work in GL,(2) as a matter of computational
pact manifold) which may not be shared by our absitract Grasamannzan. necessity, the result Of the design process is an element of
the allebraic properties of G,(1.2) are all that is required for the presens
theory. ace hence no difficult% is encountered by working with elements Gh(1,2).

* .. taken from ant abstract nag. Indeed. for our purposes. we only use the fact
tha G, i..) is the coset space GL(,)/E £and idenutfy vit the Grassman-
-. uan only to make the connection the classical literature.

It :i interesting to note that the Grassmannian has been used as a II. STABILIZATION
natural setung for muluvanate systems by mathematical system 'heonsts
foc a number of vean 28]. [91 [321 Here. a system relresented by an The basic feedback system we ccnsider is shown in Fig.
n Ac ' frequency response matn :s idenufied wth a curve takmn values
the classical Grassmannian of n planes in 2n space. As such. thai theory 2. The system is characterized by the connection equations
"dent:fjes a system %ith a Grassmanwan-vaued function. %hile our
formulauon idenufies the system with a Grassmannian built from a nng (3LI)
of functions Of coune. the "Ao approaches are completely iq-,valent in
the muiuvan.ate case. while the present Cormulation is also waeli defined
for general linear systems (ume-varying. disibuted. etc.) and
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SAEKS AND MURRAY: SIMULTANEOUS STABILIZATION PROBLEM

.L .1 12 1 T[S] = {[TS]: SES) CG,(l.2). (3.9)
C " Finally, let R,( R ) denote the set of stabilizing compensa-

tors in G,(1, 2) for a given plant represented by RRe

Fig. GL,(2).
Theorem: R,(R1) = QRQ'LS).

C 1 (3.2) Proof: To prove the theorem, we will show that the set
S= ,of all representations for the stabilizing compensators in

while the plant and compensator are characterized by GLk(2) takes the form QRPQ'S for some SEE S, from which
the theorem follows upon mapping these presentations into

E P o 1  (3.3) corresponding systems which are identified as elements of
P P 0 Gj,(l.2). If R, = QR PQ'S for some SE S, then

and [ R,PI + Q'RCQPj = [ R,P, Q'(QR,Q'S)QZ]

cj =Rc0,]l, (3.4) = RtP+QsQP2]. (3.10)

- respectively, where R. and Rc are in GL,(2). Letting Q be Now, if
- the 2 X 2 matrix in GL,(2) defined by _s=[S, Sid (3.11)

Q=[ - 1 (3.5) s32 (.1
with sIEj, since SGS, a little algebra will reveal that

* the connection equations (3.1) and (3.2) can be expressed s2 -s 2  '
as Q'SQ = J S-' (3.12)

(3.6) since (QSQ)=sIEj.Assuch,

S A little algebra will also reveal that Q- Q'= -Q; hence, R,[P, + Q'SQP,] = R, -s 21 J GL,(2),(3.13)
this connection matrix is readily manipulated. Finally, the 32J

substitution of (3.3) and (3.4) into (3.6) yields the equality showing that the feedback system with compensator

* 121 alp]_QRcP . QR,Q'S is stable.
R = j - QRCo7j =RP,p1 0aj QR QP2 o Conversely, if Rc is a stabilizing compensator for the

II= feedback system,

=[R,P, +Q'RcQP2 I tPI. (3.7) [RPPI+Q'RCQP2]eGL,(2). (3.14)

Here P, = diag[ 1,0] and P2 = diag[0, I]. Moreover, since Q and R. are in GL,(2), we may, without
On the basis of the above formulation, we say that the loss of generality, assume that Rc is of the form

system is stable if and only if RCQRQ'X. (3.15)
R [RP, +Q'RcQP2] E=GL h(2). (3.8)

in which case it suffices to show that

Since [RP + Q'RQP2 ] has entries in h, (3.8) implies that X= QR -Q'RE S. (3.16)
its inverse exists and also has entries in h. As such, a
feedback system will be stable if and only if the relation- To this end, we observe that
ship between its input vector col(Ai,,/i 1 ) and its partial
state vector col(o, ,) is stable. With the aid of (3.3) and
(3.4), this, in turn, implies that the relationship between the RP, + QRCQP] 4RRPI Q'(QRPQ'X)QPj
system input vector and all of its internal variables is = P, Q'AQP]stable, and the converse is also true [9].

With these preliminaries, we now proceed with our first R I -x:

theorem in which a geometric characterization of the set of = 0 x (3.17)
stabilizing compensators for a given plant is obtained. To
this end, recall that S is the subset of GL,(2) correspond- since
ing to the stable systems and [S] is its image in G,(1.2),
while any TE GL,(2) defines a transformation on [S] C XVQ= x -X: (181
G.(l.2) via - -
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Now, since [R.P +Q'RQP:.]EGL('), Proof: If RRE S-1S, there exist S, and S, in S such
that[I xj R[,iQRcP1G2() (3.23)-"." =R;'[ R,, -Q'PoQP,] E, = s1_s,

0 -11. Now let
(3.19) R,= QSF'Q' (3.24)

which implies that x1 E j as required to verify that XE S. which is stable since the congruence transformation de-
As such. an arbitrary stabilizing compensator for ow sys- fined by Q maps S to S and conversely. Moreover, since
tern is of the form R,= QRqPQ'X. Q1 = Q-,

The set of all representations of all stabilizing compensa- R, = QS- Q' = QSj IQQS 1 IQS-'Q'
tos in GL,(2) thus takes the form QRQ'S C GL,(2).
Now, upon mapping this set into the Grasmannia n we =(Qs.-'sQ')(Qs'.')=QR,Q's (325)
obtain

where S= QS1 'Q ES. As such, we have constructed a

[QRQ'S] = QRQ'ES], (3.20) stable stabilizing compensator for R. as required.
Conversely, if R E S is a stable stabilizing compensator

completing the proof. 1 for R,, then by the theorem, Rc= QRPQ'S for some SE S.
Unlike the previous results given directly in terms of the As such,

-fractional representation theory [91, [24] which are_!eca in R =Q'RS-'Q=Q'RQQ$ - Q
nature, the present theorem yields a global description Qf
the set 6f stabilizing compensators for a given plant. In- =(Q'RQ)(Q'S-'Q) = S-IS, (3.26)
deed, the required set is just a copy of the stable system inth rsmnia rnfredb h cio fQP1 since the congruence transformation defined by Q maps_. the Grassmnannian transformed by the action of QRQ'.

It is interesting to compare the parameterization of the R eSto..-I$ - and S-tS$- to$ 1 ES" U
stabilizing compensators of the theorem with that obtained Of course, when the hypotheses of the corollary hold, the

directly from the fractional representation theory. Indeed, set of stabl. stabilizing compensators for RPS -S, is
a little algebra with the results of (41 will yield the equality nonvoid and given by [S]nQRPQ'[S]. No explici. para-

meterization for this set is, however, known nor is it
Rt=QRQ'W; We W (3.21) obvious that one even exists. This intuition will be explored

further in the following section on the simultaneous stabili-
for the family of stabilizing compensators. Recalling, how- zation problem.
.ever, that S = WE, this parameterization differs from that
of the theorem only in that the equivalence transformation IV. SIMULTANEOUS STABIUZATION
E has been deleted. As such, the set of stabilizing com-
pensators of (3.21) includes exactly one representation for The key to our solution of the simultaneous stabilization
each stabilizing compensator rather than parameterizing all problem lies with a reversal of the analysis used in the
representations for the stabilizing compensators as is the derivation of the stabilization theorem. That is, one as-
case with the present theorem. Of course, sumes that RG GL,(2) is given and parameterizes the set

of plants which are stabilized by R,. Denoting that set of
[QRQ'WI = QRQ',W QRQ'(S (3.22) plants by R ,(R4 we obtain the following theorem. Since

the proof for the theorem is virtually identical to that

showing that the same set of compensators in the Grass- already given for the stabilization theorem of the previous
mannian is oefined by the two theories. section, it will not be repeated here.

It follows immediately from the theorem that a stabiliz- Theorem: R,(R,) = QR Q'[S].
:ng compensator always exists given that the plant. is Since every TG GLh(2) is of the form T =QRQ' (with
modeled by an R,6GL,(2). In practice, however, one R,=Q'TQ), the lemma implies that a set of plants PC
often requires that the compensator be of a specia form: G,(l. ) can be simultaneously stabilized if and only if they
table. memor'less. diagonal. etc. As such. if [C] represents lie in a copy of the stable systems [] transformed by the

-he desired class of compensators in G,(l. 2 ),it is necessary action of some TEGLh(2). Indeed. this is the desired
Jesin a compensator in [C] nQRQ'[S]. in which case generalization of the first-order example given in the intro-
, ot clear that such a compensator even exists. In the duction to the case of a general linear system. In the

-e 47e-e [C, represents the stable systems. i.e.. we desire general case, the Grassmannian plays the role of the A-B
- siable stabilizing compensator [25], a simple plane, the stables. [S], play the role of the half-plane. and

. :ne existence of the required compensator can, the general Linear group, GL,(2), serves as the group of
-e b:ained as follows. "rotations." These observations are summarized in the

-k plant represented by RE GL,(2) can be following corollary.
-abie compensator if and only if Coroilary 2: A set of plants P C G,(I. Z" can be simulta-

neously stabilized if and only if they lie in T[S] for some
R.= S-, S TE GL,(1. 2).
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0 SAEXS AND MURAIAY: SIMULTANEOUS STABILIZATION PROBLEM

Although the corollary represents a complete geometric As such, Re stabilizes the zero plant if and only if d,,Ej
solution to the simultaneous stabilization problem, it is not or. equivalently, RE S. The problem of stabilizing p with
amenable to convenient implementation. We therefore give a stable compensator is thus equivalent to simultaneously
an alternative algebraic solution to the problem in GLh(2). stabilizing p and the zero plant. Since the zero plant is

Corollary 3: Let R EGL,(2), p E P be representations represented by I E GL,(2), it follows from (4.6) that p can
for a set of plants PC G,(1, 2 ). Then P can be simulta- be stabilized by a stable compensator if and only if
neously stabilized if and only if there exists a family of
matricesS S,pePsuchthat R-= (I)'RpR'RES-'S (4.9)

S;- Sq = RP ;R q; p, qC- P. which replicates the result of Corollary 3.
f IOf course, a similar argument can be used to obtain an

Proof" If R, simultaneously stabilizes RP, p E P, then algebraic criterion for the simultaneous stabilization of a
it follows from Corollary 2 that there exist SPE S, p E P set of plants P by a stable compensator. To this end, we
such that simply augment the set of plants P by the zero plant and

then'apply the theorem to P'= (0) UP. Alternatively, a
R, QRQ'S,; pG P. (4.1) geometric criterion for the simultaneous stabilization of P

- Hence, may be obtained by requiring that PCT[SJ for some
TE S - . Since the corresponding Rc is given by

R1 'RR = QRCQ'SY'(QRCQ's) - s;'. (2 R,=Q'TQ, (4.10)

Conversely if there exists SPE S, p E P such that R. 'R q = the resultant compensator will be stable.
S S- 1Sq; p, q E P, then we let p' be an arbitray plant in P Finally, the possibility of parameterizing the set of coin-

and define Re via pensators (or stable compensators) which simultaneously

Re = QR . (4.3) stabilize P should be considered. In effect, this amounts to
R P=,S;' (4.3 parameterizing the set of 2X2 matrices TEGL,(2) or

Re is independent of the choice of p'. Indeed, if p" is an TE S- such that? C T[S ] which, in turn, requires some
alternative choice, then since R'R,. = S-S kind of parameterization for P. In particular, if P= T[S,

I then Re = Q'TQ is the unique stabilizing compensator,
Rp.S,7' :Re(R;.'Rp.SST) =R,-Sp.,'. (4.4) while the stabilizing compensators for a single plant p may

be parameterized by [S I as per the stabilization theorem of
Moreover, for any pE P, R .'R=S' : hence, Section III.

RP = R,S;'S, =QQ'RS QQS .

* =Q(Q'RP,S-'Q)Q'S=QR¢Q'S, (4.S) Since the icuon of GL(2) on G(1, 2 ) is a geometric
from which it follows, via the corollary, that the set of invariant, one: can, at least intuitively, say that the "shape"
plants PC Gh(l, 2 ) is simultaneously stabilized by Re. U of T[S] is identical to that of [S], and every set whose

It is interesting to note that in the special case in which "shape" is the same as [S] may be obtained from [S) by
P contains exactly two plants, say p and q, then they are such a transformation. As such, Corollary 4 implies that a

* simultaneously stabilizable if and only if prescribed set of plants P C Gh(l, 2 ) admits a simultaneous
stabilization if and only if P is contained in a subset of the

R;'R qS-S (4.6) Grassmannian whose "shape" is the same as [S]. For

which is identical to the criterion of Corollary I to stabilize instance, in the example of Fig. 1, P must be contained in

a plant with a stable compensator. Indeed, this should not an appropriate half-plane
'be urpisig sncethe robem f sabiizin a lan wih a Although well-defined coordinate systems do exist in the

tbe surprising since the problem of stabilizing a plant with a Grassmannian, at the time of this writing we have yet to
stable compensator is completely equivalent to the problem formulate a computational algorithm for implementing theof simultaneously stabilizing the given plant and the zero above-described simultaneous stabilization problem in any

plant [represented by R: = I E GLh(2)]. This follows im- abo e neri inerstily, hoe in any

mediately from the definition of stability used in [41 or, degree of generality. Interestingly, however, in the case

alternatively, one may let R. = I and where P is composed of exactly two plants (a two-speed
motor or the dynamics of a swing-wing aircraft), a simple

[e e -u] ( frequency domain criterion for the simultaneous stahili-
, =d, uJ (4.7) zation problem was given by Chua [8], [161 and the authors

in the single-variate case, and has since been extended to
in which case the multivariate case by Vidyasagar and Viswanadham

R- P,-, (4.8) To illustrate the above-described general geometric crite-
0RP Q = de " rion in a computationally trackable setting. consider the
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case of a set of third-order singie-vanate plan's '

" .:q,s-q (5.1) ''' - q.".•-"" ~ ~p(s) = - !:,- , s~ ° I .. , ,

s~~ s* +-.-,ps-P

which are to be stabilized by a propor:!onai compensator I ' -

c(s)= t. To represent the class of plants geometcally, we - -

identify the six-dimensional space of sLch plants with a - -- - - --

fariy of three-dimensional Euclidian spaces (with coordi- - ..
nazel P., p. R2) parameterized by the numerator coeffi- °*
cients q0. qI, and q2. As suck, we have a three-dimensional ,
family of three-dimensional spaces R3,. Of course, if (a)
there is no feedback (t 0), such a system will be stable if

: and onvif , /

.P,>Po/P (5.)
P0 P2s " .

-and- \-

independently of the numerator parameters. The resultant \ .-..
stability region for the t = 0 case is thus as illustrated in ".-..f .....
Fig. 3(a). - lot

ment with the Hurwitz criterion will yield the set of

inequalities

-Po + q > 0 (5.4) 0-

P2 +192 > •(5.5)

and (b)
Sp 1>(po+tqo)/(p 2 +tq2 ). (5.) Fig. 3.

As such. for a fixed value of the numerator coefficients qo,
q,. and q:. the new stability region is identical in "shape" VI. CONCLUSIONS

to the t = 0 case except for a shift of the origin to the point
(tq0 , tq1 .q,) in R3 Our purpose in the preceding has been threefold. First." .'" (tqo tqtq2)in R . ,.,),3as illustratedl in Fig. 3(b). Ofpuospredg

course. as t changes. the origin of the stability region moves we have attempted to exhibit the essential relationship
along the Line determined by the point (qo, q,.q 2 ). Unlike between the fractional representation theory and the alge-

the t = 0 case, however, where the stability region is inde- bro-geometric approach to system theory. Second. we have

pendent of the numerator parameters, the line along which presented a global solution tc the feedback system sta-

the origin of the stability region moves is determined by bilization problem. Third, a solution to the simultaneous

the numerators parameters. Thus, in this example, our stabilization problem has been presented. It should, how-

three-dimensional family of three-dimensional Euclidian ever, be pointed out that the soluton presented for the
spaces R , plays the role of the Grossmwnian, with simultaneous stabilization problem is mathematical in na-

the region defined by (5.2) and (5.3) in each such space ture and not intended for computational implementation.
characterizing the stable systemrs. Furthermore. the rea- At the present time. no computationaly feasible solution

group (corresponding to the proportional compensators) to the simultaneous stabilization problem is known, except

acts on this space by translating the siabilin, region in the in the case where P contains exactly two plants wherein a

- space R1 o.,C. 2) along a line determined by the point simple frequency domain test is possible [81. [161 and in the

(qo. q,. q:.). simple low dimensional illustrated herein.

Although the above example was derived from basic
principles, we believe that it illustrates the essential geo- REFERENCES
metric nature of the simultaneous stabilization problem as
formulated in our abstract theory. Indeed, a pre-scribed set !11 P I Antsaklis and . . Pearson. -Stabilizauon and retulaton in% hnear multnanab~le systems,'" IEE 7r~. Autorat. %.Ontr.. val.

of plants car, be simultaneously stabilized if and only if AC-r3. pp 9'S-13.0. i97

0 the. are contained in a translate of the stables. :,1 G Benguson, Dutput regulauon and :nternationa, modes-A
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THEORY OF DESIGN USING NONLINEAR TRANSFORMATIONS

Renjeng Su,* L. R. Hunt,t and George 4eyer+

NASA Ames Research Center
Moffett Field, California 9403S

ABSTRACT systems of ordinary differential equations. Sev-
eral •techniques for obtaining exact and approxi-

This paper is presenting an overview of tlhe mate transformations are noted.
theory of transformations from nonlinear systems
to linear systems. Topics covered include (1) Once a nonlinear system is mapped to & linear

- necessary and sufficient conditions for transfor- system, the known theory for design of linear con-
mations to exist. (2) a method of constructing trol systems can be used to desig for the non-

- transformations, (3) robustness in design (based linear system. We show that this technique is
on transformation theory) and Lyapunov functions, robust. In terms of stability, Lyapunov functions
(4) estimation theory, and (S) the relationship for the linear system are composed with the trans-
between transformtion theory and "nonlinear formtion to provide Lyapunov functions for thezeroes.-- Application of these Tesults to Rut - nonlinear system.

matic flight control is presented in another paper
at this session. Brief cements are given showing the rela-

tionships between transformation theory and esti-
nation and between transformation theory and

I. INTODUCTION "nonlinear zeroes.-

Suppose we have a system that is nonlinear. For other work on transformations we refer to

If there is a set of coordinates (in state and the research of Krener, 2 Brockett,S Jakubczyk and

control space) for which this system appears as a Respondek Hermann s and the results in Refs.

linear system, then the nonlinearity is only the 6-12.
result of an unfortunate choice of coordinates.
This leads us to the problem of classifying all 11. TRNSFORMATIONS

" nonlinear systems that can be transformed to con- If we have a controllable linear system with
trollable linear systems. m inputs

* The systems of interest to us are y-Ay + Bu (2)

.(t) a f~x(t)) . u(t)g(x(t)) , (1) then Brunovskyv proved that it could be put in theA a i ti( canonical form
.o -BV , (3)

- where f,g1 .g2,.....g are if vector fields on a 0
]Rn (i.e., each assigns an n vector at points of which is based on the [ronecker indices
an] and f(O) a 0. We present necessary and suf-
ficient conditions for these systems to be trans- '; ,12,..,m with W1 + C2 * cm n n and

" formable to controllable linear systems in K! I 1C2 _ ... )' KM. We let 01 '1 ,o2 K 'I + C2,

Brunovsky1 canonical form. These conditions de- ...,Om a C1 " '2 * ... * Cm s n. For a complete

pond on Lie brackets from the field of differential description of Eq. (3) see Ref. 12.

geometry. We find necessary and sufficient conditions

Given a transformable system, we mention a to map our nonlinear system (1) to the canonical
vmethod for constructing transformtion to a linear system (3). We consider transformations

metod orcontrctig trnsormtin t aT a (T1 ,T2 ,-. ,T InT . Tnm) fromlinear system. This method depends on solving Tn. (T 1 ,T 2 .. n,no,... m) s e t.. nR m ((XI X,x ..... Xn,U 1,u2 ... u Spec*) to
-. Rnm ((YI ,Y2 .  ynvl ,v2 .... vm) space) which a.ply

R*esearch Associate of National Research Council for all (xl,x 2 . ...xn) in some open neighborhood of
-at Ames Research Center. (0,0....,0) in Rn and which map the origin in

* 1 Research supported by Ames Research Center under x-soace to the origin in v-soace. Of course we

the IPA program and the Joint Services Electronics want such transformations to be diffeomorphisms

Progra at Texas Tech U. under Contract NO0014- ( r,*'"inverse, nonsingular. and one-one) and
76-1136. take system (1) to the system (3). The last m

-Research Engineer. coordinate functions Tn. 1 ,Tn, 2 , . ,Tn~ m  are the
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only ones that depend on the controls u,,u.. III. CONS"UCTION OF ANSFORMArIONS

We denote by (.,.) the duality between one-

Given W vetor fields .and g on l we tforms and vector fields, that is, if h is a
defie te Le backe of f ad ~function and f a W"vector field

defin.e the Lt bracket of f an g-
Dh f I ,, M f 2 ;h

If s - f .- L- g 
I TX 2 fl.. . ,

r AIt is shown in Ref. 11 that unde the assum -
3m a k e to n s o f T h e o r em 1 , w e h a v e a d e s i r e d t r a m s fm cr-

waea take tion (Ti.T2z....T jTr . T I if and only if we
-

i ons :.

( 4 T j .Ca d i f .g ) ) - o j - . . . .c1 -2

(ad~f I-If-&BandL

( ndkf $) •([cndk-leig) ] .
a, .

A set of W" vector fields {fifz,....fr)
on is involutive if the" exist 1"" _unc-

tions Yijk(=) sc that (dTO1 .,.(adjf.g1 )) * j a o (4)

kes

[ff ,-fjJCx) -2 V±4k(X) k (a). I l i ,~ 'i 
n i , . .

W e d e f i n e t h e s e t s w Tt. f ) S u L ( d T , ( 'i ) ) - T n . ,

C -gz. (f.ljJ.....Cad f #S1) ,11 ,[f,g2 ] ,.- (f' 2ad 2 l ))

(dLe.f) -' .i)) -,.... 
( d u - 11

* "where the plus sin is for ci odd and the minus
.,z... sigp is for ci even, i 1No... . We also vant.... ('Lj the matrix

f.... ( .,,, -f . ) for j • 1 ,2 ...a 1 ,2 a Ki .l

The following result from Ref. 11 gives condi- (d?1(ad f(g)).(d71 (ad f~g))

tions under which a transformation of the type we c
consider exists. (do. 1 .z(ad'f- 1 )) ... (dTl.1 .(ad -f9)

- Theorem 1 The systm (1) is transformable to (5)
the system (3). where the state variables
Sx l ,x 2 , ..X n a r e c o n t a i n e d i n s o m e o p e n n e i g h b o r -

"" hood V of the origin ln Rn, if and only if t -1

1. The set C spans an n-dimensional space L, f.1 )). (dT. , j--ad ., j)

at each point of V to be nonsingular. The other coordinate functions
.The sets C are invoLutive fo; of the transformation are found by differentiation:

2. The sesC 
r n 

~tv oT,

T2 . . . . . • a * -l , T , a T 2 ,. . . . .c T : oz1. 1 . e t c .

3. no span of each is equal to the Note that the last a equations in (4) hold,
span of C /'C sh

once we find T,.,T -I. . . .To, . satisfying the

An obiousprobem i howto cnstrct afirst sets of 00 'ustions.' These last Ma 0 euationsAn obvious problem is how to construct a allow us to solve for uL,ul ..... .. n terms of
transformation if the hypotheses of this theorem Tn. u (ese are the same as
are sa t is fied . Tnn. Z
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V1,V 2 ,.. ",vm). This fact is extremely important T, * Sp, 5s
in practice.

To find solutions T 1 ,T 1 T....T0 .. ! of so:

(4) we move from partial diffirential e'quAtions to
ordinary differential equations, as in Ref. 11.
We order the n vector fields in C as follows.
Let

X, 

T 

ad l ',g 1)
By the inverse function theorem we can solve

- f-1 for sl,s2,...,sn as functions of xlx 2,....' xn
(ad f) (ad 1  f,g 2 )EC [because matrix (5) is nonsingular], and hence we

know T,T ..... TTo.lo. Examples of this pro-.
C (ad f K12 f if cess az'e on in Refs. 10-12.

Henry Ford (a graduate student of the second

i g author) is currently using the MIT MACSYMA progroa
(ad~ f,&3)if (ad COE(: to construct such transformations and is also inves-

tigating numerical methods. Complete solutions for

K-..- block triangular systems are given in Refs. 6 and 7.i (ad l'£,l) if Cadl'$1f,S3)4Cand Cadc 1 "f92)&C An approximlation technique using the concept of the

tangent model is presented in Ref. S. This con-
3, (1 "  " struction is useful in the design of an automatic

(ad if Cad f, SZ)i C a n d (ad !  ,2)'C flight controller for a helicopter. The tangent
mdel gives us the linoaxiiation of the transforms-

' 2  tion about a point (without having the actual tr ns-
(ad f,g 3 )if (ad tlf, )OCand(ad f,g 2 )dC formation) modulo constants

V. ROBtUS7SS

Our Eq. (1) is a mathematical model for some
physical plant that we wish to control. Suppose

% n So" we are interested in the problem of stabilization.
If we choose controls to asymptotically stabilize

we then examine a sequence of ordinary dif- the model (1) about the origin, do these controls,
when applied to nearby nonlinear systems, asymp-

f.rential equations. Real parameters s n2, totically stabilize them about their respective
Sn are introduced by solving in order equilibrium points? In particular we hope that the

plant is one of these nearby systems, and thus we
• dx x1 with x(O) a speak of robustness.

In our work" we consider a transformable non-
dx linear system (and to make the present discussion

X. with x(s 1 ,O )  x(s,) easier we assume the transformation is applicable
* ds 2  on all of Rn) and use linear feedback. that is, we

choose v! v2 ,... ,vm as linear feedback controls.
dx= to asymptot±cally stabilize the linear system (3).

X ds 3  w '1ithx(S'S20) x(sl's 2 )  
The corresponding controls Ul,U 2 ..... ,u to use on
the mathematical model and the plant are found by
solving the last m equations in (4). Given any
compact set K C Rn ;l,.x2 ,... x,)space) there is
an open neighborhood ,P of the system (1) (with

u,,u2,...,uU substituted) in the set of vector
dx fields in 'le(K) such that if ke.-, then a solu-
1s-_ Xn2ithx( ,t. n.,)x(s1,s2.......-) tion of i * k(x) starting at any point xeK must

n converRe to the equilibrium point of x a k(x) in K.

For i w 1.2. m we let pi equal the sub- Here r is chosen so that all ke./Y have a unique

script of that Xk which is equal to (adl'
3 1

f,g1 ). equilibrium in K. Thus, all nearby vector fields

Then we let k are also stabilized; the proof of this result
appears in Ref. 13.
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Sevs al im ortant fac-s are used in developing .A distribution . or. R is a. ass1igment
this theory. One is that if linear feedback con- A(x) of a lineaz subspace of 30 at each point of
t:ois v-,v .... av re taker. to asymptotical.y In. We assume that -, is of posi ttve constant
stabil':e the linoa.- canonical system (3). then d.ension and often identify a with the set of
Lyapunov functions V(y) car oe constructed in vector fiel*s in -t. We also take A tc be invol-
y-space. However, the comoositior. of a V with a utive and regular -from Ref. 18 this means that the
transforma:ion T )ields a Lyapunov fion on for quotient set An/& is a. '- manifold). "he dos-
the nonl!.near system (1) with controls tribution a is (f.g) irvariant if there exist
u,,u2,...,u as computed froa our equations. a(x) and 5(x) so that
These Lyapunov functions are very valuable in
assur_.ng us of the above mentioned robustness.
Another useful, but not entirely surprising, dis- C

cover is that the eigenvalues of (3) with
v!,v2,...,vm substituted are the same as the [ aAJCA
eigenva!ues of the iinearization of (1) about
CO.C. 0) and with the corresponding where f - g and S S. We say that A 's*u!,u,.._ ,. a null observable distribution if it is (f,g) in-

variant and contained in t kernel of
V. TRA*4VORPATIONS, ESTIMATION, AND. dh a (dhjdh2 . . db). We suppose that a maximial

- 14ONLINAA ZEROES such distribution exists. Prm Ref. 21 we deduce
that there are initial condition. (not including

Suppose we take the nonlinear system (I) sat- points whe.e f~g t ..... are linearly dependent)
is~fyng t~h hypotheses of Theorm 1. W* add an in each lere" set of th# output (the kernel of dh)
M.P-valud output z a h(x), which is V4'. In and controls that force the output to stay in the
transiorming system (1) to Brunovsky canonical fors level set in which it begints. This constant out-put
(3), we can also transform the output to obtain is the non'inear generalization of the output being
- u h('(y)) - h(x(T)) for the linear system. We zero for a linear systm.
read the output h(x) of the nonlinear system and
tranifo= to the output for the linear system. If how does the above concept relate to the trans-
the states in y-space (where the dynamics are formation theory of this paper? Suppose our system
linear) can be estimated, then by the inverse (11 Lor (6)) is transformable as provided in
transfomation we have estimates of the states in Theorem 1. Does there exist an a-dimaensional V"
x-space. output for which the system is observable for every

input, but for which there is not a null observable
lach1 has used the concept of transformation distribution? The answer is yes if we take

for construction of an estimator of aircraft h, - TI9 hz u To., . h * T-,. Since
motions. T1 ,To,,---,To I., satisfy equations in (4),

no nohtrivial (fag) invariant distribution can be
* - Continuing to consider systems with outputs, found in the kernel of dh, and the output is ob-

we turn te a discussion of "nonlinear :eroes," or, servable for every input. This follows from the
more precisely, nonlinear zero distributions, method in Ref. 18 of building the maximal (f,g)
Given a linear system with linear output there are invariant distribution contained in the kernel of
various definitions of zeroes, available. We refer dh by differentiating the output repeatedly with
the interested reader to Refas. 1S-17. respect to time. Let us examine this for the case

a a 1 and h(x) a TI(x). To hold the output T
- In a recent paper, Isidori et al. 10 discuss constant we must have

nonlinear decoupling via feedback for nonlinear
systems. They introduce the concept of (fg) in- T* a constant
variant distribution, which is a nonlinear general-
i:aton of the (AB) invariant subspace of Wonham T ,
and Morse 19 and of Basile and HMarro.2 0  Kroner and T2  "1 * (dT1 ,f/ - u(dT1 .g 1 ) a 0

- Isidori'z give the definition of nonlinear zero
dlstribution, analogous to the ideas of zeroes for T u T a (dTf", - u(dT .
linear systems. Two cases are considered: (1) the 2 2

" .uamber of inputs a m < p a the number of outputs d
and (2) a : p (here the concept of (hf) invariant [
distributions must be introduced). Throughout our
discussion we examine only the first case. c*'

Our system is (1) which we now write as
T- T u(dT .f) u(dT .8,

x * f(x) - g(x)u (6)
t (dT ,!f ± u(dT,,(a'"fs2) 0w ith W40 output - h(%) . 4ere j(x) is the nxm n,

matrix (g~;... and u t he column vector _

'u,,2, ...,u;) and the meaning of g(x)u is T a (dT " '(dTn'5.)

obvious.
a dT n . u(dT.,(adK ,

n f#go-

a33
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The equations .(dT 2 ,g1 ) G , . . Meyer and L. Cicolani, Applications of
a :(dTj,(ad',_"f,gi)) follow from a Leibniz Nonlinear System Inverses to Automatic Flight Con-
formula used in developing Eqs. (4) ir, Ref. 11. trol Design - System Concepts and Flight Evalua-
Now (dTi,(adJf,g)) -.0 for j - , tions, AGA-RDograph on Theory and Application of
by Eqs. (4) and (dT, (ad"l'-f,g1 )) 0 0 from (5). Optimal Control in Aerospace Systems, P. Kant, ed.,
Hence u s 0 and from (7) 1980.

, (dT1 ,g)u 0- S. G. Meyer, The Design of Exact Nonlinear
Model Followers, 1981 Joint Automatic Control

(dTf (dT gi>u 0 Conference, FA-3A.

9. R. Su, On the Linear Equivalents of Non-
linear Systems, Systems and Control Letters, to
appear.

(dTnlj (n*)= 0 10. L. R. Hunt, R. Su, and G. Meyer, Global'

Transformations of Nonlinear Systems, IEEE Trans.
Since dT1 ,d T . dT are linearly independent, Auton. Contr., to appear.
the initial conditions for which we can apply 0

• control and stay in a level set of the output 11. L. R. Hunt, R. Su, and G. Meyer, Design
coincides with the set of points where f and g for Multi-Input Nonlinear Systems, Conference on
are linearly dependent. Thus, no (fg) invaria nt Differential Geometric Control Theory, to appear.
distribution contained in the kernel of dh exists.
Also notice that since u does not appear in 12. L. R. Hunt and R. Su, Control of Non-
TI,T 2,... ,Tn and dTl,dT 2,...,dTn  are linearly linear Time-Varying Systems, 20th IEEE Conference
independent, this system is observable for every on Decision and Control, San Diego, CA, 1981,
input. pp. 5S8-563.

The main purpose of the above discussion is 13. R. Su, G. Meyer, and L. R. Hunt, Robust-
to show the relationship between the equations for ness in Nonlinear Control, Conference on Differ-
dTl,dTo j,-.., dTcm_ 1I in (4) and the method of ential Geometric Control Theory, to appear.
computiiag null observable distributions in Refs.
1 and 21. 14. R. E. Bach, Jr., A Mathematical Model for

Efficient Estimation of Aircraft Motions, 6th IFAC
Estimation, to appear.• V1. CONCLUSION Symposlum an Identification and System Paraeter

We have presented a sumary of 
the theory of

controller design via transformations of nonlinear IS. A.G.J. MacFarlane and N. Karcanias, Poles
systems to linear systems. The related topics of and Zeroes of Linear Multivariable System: A
the construction of transformations, robustness, Survey of the Algebraic, Geometric, and Complex
estimation, and "nonlinear :eroes" have also been Variable Theory, Int. J. Contr., vol. 24, 1976,
treated. As mentioned, a paper discussing the pp. 33-74.

* application of our theory is contained elsewhere
in these conference proceedings. 16. C. A. Desoer and J. D. Schulman, Zeroes

and Poles of Matrix Transfer Functions and Their
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APPLICATIONS TO AERONAtICS OF THE THEORY OF TRANSFORMATIONS OF NONLINEAR SYSTEMS

George Meyer,* Renjeng Su,** and L. R. Hunt-

NASA Ames Research Center, Moffett Field, California, U.S.A.

ABSTRACT

We discuss the development of a theory, its aprlication to the control design of nonlinear sys-
tems, and results concerning the use of this design technique for automatic flight control of air-
craft. The theory examines the transformation of nonlinear systems to linear systems. We show how
to apply this in practice, in particular, the tracking of linear models by nonlinear plants. Results
of manned simulation are also presented.

INTRODUCTION

Suppose we model a physical plant by a nonlinear system

m

•(t) - f(x(t)I +E u (L)gi[x(t)] , (1)

- i-i

where f, g,. , g are C vector fields on 'n and f(O) - 0. If we are to have the output of
this plant follow a particular path, then we have a difficult problem to consider. However, if there
are new state space coordinates and new controls under which equation (1) becomes a linear system,
then our task appears to be much easier because of the known results for controller design on linear
systems.

;e feel that the following problems are thus of interest:

(a) Find necessary and sufficient conditions for the system (1) to be transformable to
a controllable linear systems.

(b) Show how to use these transformations so that the controller design for nonlinear systems
* can be reduced to that of linear systems.

(c) Apply the above theory to the field of aeronautics.

In the next three sections of this paper we discuss the solutions of these problems.

TRANSFOV.ATION THEORY

The classification of those nonlinear systems that can be transformed to linear systems is actu-
ally a subproblem of a much deeper result, the construction of canonical forms for nonlinear systems.
We are presently developing a theory for such canonical forms, and in the case that a nonlinear sys-
tem is transformable as in this paper, the canonical form is actually the Brunovsky (ref. 1) form for
a linear system.

Here we concentrate on the transformation theory developed ir references 2, 3 and 4. Other
significant research in this area is due to Krener (ref. 5), Brockett (rel. 6), Jakubcyzk and

* Respondek (ref. 7), and Hermann (The Theory of Equivalence of Pfaffian Systems and Input Systems
under Feedback). We also refer to the early work of the first author in references 8 and 9.

- . If we are to map our nonlinear system (1) to a controllable linear system, we may as
well assume that this linear system is in Brunovksy (ref. 1) canonical form with Kronecker indices

m
K, l C2' "''' 1. m satisfying E K, n and K, K2 K . Hence this system is

V-"Ay + Bw (2)

where A is n x n, B is n m, w = (w ,w2 ,. .., w ) are the new controls, A is equal to

*Research Scientist at NASA Ames Research Center.

Research Associate of National Research Council.

Research supported by NASA Ames Research Center under the IPA Program and the ;c:-.: 5Er'..-s
- Electronics Program at Texas Tech Universitv, Lubbock, TX and under ONR Con-.ac: - -

This paper is declared a work of the U.S. Government and therefore is ir the public domain.
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MICROCOPY RESOLUTION TEST CHART
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The transformation results we present are actually local (in sow oper. neightorhood of the
e origin in (I, x2, ..., zn ) space), and global theorm are found in reference 3. We simplify nota-

t'.on by sayIng Vfl when we actually mean an open neighborhood of (0, 0, ..., 0) in RI. Rowever,
31 means (u1. U2 ... UI ) space (or (v , wZ, w aI ) space) and this is not local.
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-We discuss the allowable transformations mapping s~stea (1) to system (2). We want a C" map
- (YI, Y2. . ' yn' wl W2 ..... WU) Mapping R n x R [(X, x2, ..... xn u1, u2  .... u') space]

to 'R' x R [( ' -yl Y2- . Yn, WI, W2, ... , W.) space] that satisf~es the following conditions:

i. Y maps the origin to the origin,

2. Y!. Y2, ... , Yn are functions of x1, X2, ... , xn  only and have a nonsingular Jacobian
matrix,

3. w1 , w2 , ... , wm  are functions of x1 , x2 , .. , ul, u2, ..., um and for fixed X1, X2 ,
xn, the m x m Jacobian matrix of Vl, w2, ., w. with respect to ul, u2, *. UM

is nonsingular,

4. Y maps system (1) to system (2),

* 5. Y is a one-to-one map of Rn x NRonto Rn .

Next we introduce some basic definitions from differential geometry.

If f and g are CO vector fields on Rn, the Lie bracket of f and g is

aher and

where A and A are Jacobian matrices. We let

(adof.g) - g

(ad f,g) = [f,S]

S(ad 2 f ,g) _ [f,(fS,)]

(adkfg) - [f(adk-1 f,g)]

A collection of CO vector fields h1 , h2 , ..., h r  is Thvolutive if there exists C" func-
tions fijk such that

r

*h(hith i() E_2 YIjk(x)h(x) 1 i, J I, t I J

k-i

Let (.,.) denote the duality between one forms and vector fields. If w - w1 dx1 + w2dx2 +
+ ndXn is a differentiable one form and f a vector ield on Rn, then

(Wf> i - Wf 1 + W 2 f 2 +... -+Wnfn

To state the main result from reference 4 giving necessary and sufficient conditions for trans-
forming system (1) to system (2) we need the following sets:

-191,9(f,19 .... (adl c'- f,gl) ,92, (f,921..... (ad'2" ' f-,--...C a

g,(fg,.... (adcaf,gm)} for J-l,2,...,m.

Theorem 2.1 There exists a transformation Y (YI, Y2n .... Yn, , V 2  "'', - m) satisfying condi-
tions i) through v) above if and only if on In

1) the set C spans an n dimensional space,

2) each set C is involutive for j * 1,2,... ,, and,

3) the span of C equals the span of Cj n C for j - 1,2,...,m.

Let o1 - K, 02 ' K1 + K2 ... , o - + K2 + "' + Cm - n. Then the transformation is con-
structed in reference 4 by solving the partial differential equations

'I

(dyl,(adJf,g:)) - O,J-0,1.... ,K-2 and i-1,2,...,m,

(dy +0 ,(adf,'$t)) - 0,J-0,1, ... 2-2 and i=1,2 ..
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(dyc + 1 ,(adj',f.)) - 0,.u-,l . -2 and iL,2 . . (U-1 (3)

(dy f) + u (dy ,01.2) - v

(dy0,f) +F u (dynl0g*1 ) vu,

i-,

* (d 3 .+ Pa '1 (072-51, pp we

where the macrix

- (dy 1 ,(ad' "f,gi)) • • • <dy :(,d' : f Sg)>

- tay0.. 4 ,ud8'cm
1f,Si) • . . (dy. 1 ,(" 1 fc m l ,g 3))

Is nonsingular.

It can be shown that matrix (4) being nvertible meam ye can solve for u19 u2, ... , m
in terms of vi, v 2 , ... , v In the last Z equations in equation (3).

Iquatiom (3) can be formally solved by coasideriag a sequence of ordinary differential equations
as in referemce 4, but we shall not mention details hers.

If a aollmear system Is transformable to a linears sen, we study the proces of using the

transformation to cotruct a controller for the nnlinear system.

TNMSFoIAuIOS IN COTROLLE DESIGN

Lot T - (yr" Yap .' Yn 1, v1, -... , V) be the transformation from system (1) to systo (2)
as before. The structure of the control system using transformation theory Is Illustrated In
figure 1. The desiga scheme is Implemnted on the "linear part" of the diagram., and this syste
is In BIumovsky form.

ge ask that the output of the nonlinear system follow a particular path which corresponds to a
trajectory for the output of the linear mdel. If we know how to design for the linear system, then
we actually have a cracking of a linear model by a nonlinear plant.

Linear design Is used to generate am opem loop comand vw. for the system (2), and we find
the corresponding y coordinates yr by plugging we into equation (2). The transformation Y
aps the measured x space to y space and y is compared to Ye and the difference is an

error es. The regulator yields a control 6v uhich sends ey to zero, and variations in plant
dynatlcs and disturbances are coemaanted for in this way.

The controls vc and 6v are added and transformed through the inverse sap t (actually
Wc- 4 v Is substituted into the last a equations in equation (3) and u a (u 1 . u2, ... , us) is
Snerated) to obtain a control which is applied to the plant. Thus we have an exact model follower,

and the difficult problem of finding an open loop control and the regulator control are constrained to
the linear systen.

The remainder of this paper contains the application of the transformation theory to aeronautics.

AuTomATiC nLirC? CmoWRoLLu.t DESIGN

The aircraft will be represented by a rigid body moving in 3-dimensional apace in response to

* gravity, aerodynamics and propulsion.
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The state

x- () X C R3 
x x 0(3) SO x(5)

SC
where r and v are inertial coordinates of body center of mass position and velocity, respectively;
C is the direction cosine matrix of body fixed axes relative to the runway fixed axes (inertial),
and w is the angular velocity.

The controls,

u-(u) UCIRS xIt (6)

where uN is the 3-axis moment control such as ailerons, elevator and rudder in a conventional air-
craft or roll cyclic, pitch cyclic and tail rotor collective in a helicopter; and uP controls
power - throttle in a conventional aircraft, and the min rotor collective In a helicopter. The
state equation consists of the translational and rotational kinemtic and dynamic equations:

• -v

- f?(xu)
(7)L = S(w)C

*+ -fr(x,u)

* where fF and f0 are the total force and moment generation processes and xtX. We vish to transform
equation (7) into a linear system.

In general, fX is Invertible with respect to the (vector) pair (4' u), and, for the specific
class of helicopter maneuvgrs being considered (i.e., no 3600 Tolls). ff is invrtible with respect
to the (scalar) pair ( 3 tuP). Thus, a function h:X w * U can be constructed such that if

* (u) a h(r,voC,4,9420) (8)

then

(9)
43 ; 3ao

for all admissible maneuvers. That is, angular and vertical accelerations can he chosen as the now
set of independent controls in which case thi state equation may be written as follows

fO(t'vC;30) + Cf1 (r,v,C,SOwiO)
((10)

where c - 1, and fl(r,vC,0,0,0) * 0 for all admissible maneuvers.

The function fO Is invertible with respect to ((O],i 2 ,E 3 (W)),C) where 3 () is an elementary
* rotation about the z-axIs and represents the heading of the helicopter. Thus, a function hf:G "

u SO(2) - SO(3) can be constructed such that if

- Co a hf(r,v,&O,E9(O)) (11)

then

" 'o (12)

* Equations (8) and (11) are the trim equations of t;,, process equation (10) (with c - 0). That is,
for a given path (r(t), E3(*(t))), t 2 0 with '03(t) 0 0, the corresponding state and control may be
constructed as follows
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v* " (t)

CO

uo. * b(rO~vO.Cg.wg,.Lo,0)

wbere the fmetio q extracts a frm Ut - S(a.. The required tim derivatives In equation (13)
co be Computed provider that the path (r,23) 11 gEnted by the systam deamlomi Is figure 2
Where 0 rep eta, a sealr Integrator and 70 the control (v in the previous section is y5 here).

We construct am approi mation to the llriting transformstlm as follows T1 11. Q are con-
structed so that

y a Y(z) a T0(z0) + yT4z Yo + Y1Iz

u 0 R(z,y s ) I us + R147s Q z

- To1. SO .IB the trnaforestloo whoa c a 0. and So (and 4y s ) io the perturbation about the nolual

ZO (and 7g) iven In Equation (13) (and figure 2).

From equation (10) with C - 0. It follow that (C * (I + S(c)C0)

0 a 0 0
( Lv)" u 4Ar + L- + -Of c. f*)

T4 (5)" * •

wbore t is attitude perturbatie.

The pattern of equation (15) after son rearrangenat of coordinates is ohbmm In equation (16).

0 z 0 0 0

vi v21 
Cl ¢1 .0 Cs

r3 l 3

0 0 0 0 62 •

w d,3 IW3

Zn the present case of the Pellcopter, C1 , C., and CS are negligible. Their effect ill be con-
trcll*d by the regulator.
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The transformations

sYl ,Arl

2 t 6r2

ay 2  S- -

2

o) - 0 0 (7
6y2 6r2

Sm

672 3 12 CS217

2¢ C2
3

67 6r3-

1y 6wJ

6y~ pC2 C3 6002

2- 0 0

lb I -0

4 ~6r

* ctak the system 1* eq ato n (16)( vih C1 , 4, C 5  * ) nto the cano nic se m:

o i 0 0 0I

o 0 tIT o o
(y)" - 0 0 0 6y,+ 0 6y (19)

00 1

•o o o oa

Thus, the linearizin transomtion ( Y and I i figure 1) is constructed.

That the accuracy of the transformation is dequae ay be seen from the reul of the simula-
ton of the flight eermt to be briefly + arzed next.

SThe test consists in automatically flying a trajectory vhich exercises the system over a vide
range of flight conditions as shown in figures 4 and S.

Thus, the test takes the helicopter from hover (WP1) to high speed (150 ft/sec) turning accelera-
tion, ascending flight.

Figure 6 shoys the resulting tracking errors.

As can be seen, position tracking error • is quite small. The acceleration errors e, which
Is due to the neglected terms in the construction of the linearizing transformation Is also quite
small. In simmary, the resulting performance of the system is good.
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DESIGN FOR MULTI-INPUT NONLINEAR SYSTEMS

L. R. Hunt*, Renjeng Su**, and G. Meyert

Abstract: Consider the multi-Input nonlinear system

m

i(t) - f(x(t)) + ui(t)gi(x(t)).,
i'

where f.g1, . . ", gm are i" vector fields on some neighborhood of

S - the origin in Rn  and f(O)-- 0. We present necessary and sufficient

-conditions for this system to be transformed to.a controllable linear

system. Our results are constructive and depend upon the solutions of

overdetermined systems of partial differential equations. Moreover,

we indicate how this theory is applied to build an automatic flight

controller for vertical and short takeoff (VSTOL) aircraft. Flight-

test simulation results are presented.

1. Introduction. We examine nonlinear systems of the type

m

i(t) - f(x(t)) + 1 ui(t)g1(x(t)) dx

where fg1, . • ., , are V vector fields defined on some open

neighborhood of the origin in ]Rn and f(O) - 0. Our goal is to find

* necessary and sufficient conditions on (1) which guarantee that this

system can be transformed to a controllable linear system, again for

(xlx 2, . . ., xn) in some neighborhood of the origin in R
n . Of

course, we want our transformations to map the origin to the origin,

* to have a nonsingular Jacobian matrix, and to be one-to-one. For the

purpose of applications, it is convenient to have a method to construct

a transformation, rather than just conditions under which a transforma-

tion exists. Therefore, such a method is introduced.

Meyer and Cicolani in [8] and (9) have considered such transforma-

tions for block triangular.systems. Krener [7] found conditions if the

1.01



transformations are restricted to sta:e space coordinate changes. In
the single-input case, Brockett [1] presented assumptions under which a
nonlinear system and a controllable linear system are equivalent if

coordinate changes and additive state feedback are used. With the

addition of input space coordinate chances for a multi-input system,

Jakubczyk and Respondek [5] discovered necessary and sufficient

conditions for a nonlinear system to be equivalent to a controllable

linear system.

Recently, the second author [13] proved a result for transforming

a single input nonlinear system (m a I and g.= g) to a linear system,

•. where the conditions under which transformations exist are more general

than those mentioned above. Essentially, the system (1) is "equivalent

(in a neighborhood of the origin)" to a linear system in integrator

form if and only if g,[f,g],(ad2 f,g), . .. , (adni f,g) are linearly
independent and g,(f,g],(ad2f,g), . .. , (adn-2 f,g) are involutive
in some open neighborhood of the origin in Rn . Here [',] denotes

the Lie bracket, (ad2 fg) - (f,f,g]], etc.

The purpose of the paper is to generalize the theory in [13) to

multi-input system. First, we establish a notion of equivalence

between systems and determine the types of transformations of interest

to us. In fact, we derive a system of partial differential equations,
the solution of which gives us a transformation. We remark that our
sufficient conditions for the existence of a transformation are weaker

than those found in (5]. Most importantly, in addition to showing the

existence of a transformation, we actually present a constructive proof.

Since we are mapping to controllable linear systems and each such
linear system has a Brunovsky (2] canonical form based on its Kronecker

A indices (see [6) or [16)), we may as well choose a set of Kronecker

indices and a canonical form and ask for necessary and sufficient con-

ditions to transforn our system (1) to this canonical form. Suppose
we take positive integers (the Kronecker indices) c1,12, . M

with €I + cz + • + m a n and "• ! cm and the
Brunovsky form associated with these indices. Assume that g1 v,g2 9, . .

"' g,,, are linearly independent near the origin (this can be weakened).

With a possible reordering of g,g 2, . . ., gI, we can transform our

'."  nonlinear system te the linear system In this Brunovsky form if and
-only if in some neighborhood of the oricin in jn:

-A...-22
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i) The set C = {gj,[f,gj], ., (adI f,g,,g ,Cf,g,.
(adZ-1f,gj, ., gm,[f,gm], . . (., ad m- f,gm)} spans

an n-dimensional space,

ii) The sets Cj a {gl,[f,gl], . .. (ad L f,g1 ),g2,[f,g 2]

(ad f,g2 ), . . .,gm,Ef,gm], .. , (ad 2 f,gm)} are

* involutive for j - 1,2, . . ., m, and

iii) The span of each C is equal to the span of Cj ( C.

We obtain a transformation T:]Rn m ,I nn+m where

* (x19x2, . . •, Xn,Ul9U2 , . . ., um ) are the variables in the domain and

(T,T2, . . ., Tn m ) are the variables in the range. Of course

X1,X2 , . ., xn are the state space variables and u,u 2 , . . ., um

are the controls for our nonlinear system (1). Likewise T1 ,T2, . .,

0 Tn are the state variables and Tn+ 9T n+z , . .., Tn+ m  are the controls

for our linear system in canonical form. The existence of such a

mapping follows from the Frobenius Theorem, and we give a constructive

proof of the transformation.

* In [5] the additional assumptions made for the transformation

problem are that each of the sets

C =g 1Ef,g1j, . . , ad j- f,g),.g2 [f,g2 ], . . ., (ad3  f,g2),

0 . .., . .. , fa f,gm))

are involutive for j - 1,2, . .. , m and I - 3,4, . . j.

However, it is quite surprising that we can show that these extra con-

* ditions are a consequence of our assumptions i), ii), and iii) above.

This fact is apparent in the approach we take through the topic of

partial differential equations and indicates the power of our technique.

At NASA Ames Research Center, the theory provides a formal

mathematical framework for our design technique involving an automatic

flight controller for VSTOL aircraft. The highly nonlinear mathematical

models are transformed to controllable linear systems, where known

techniques can be applied to build a controller. The partial differ-

ential equations approach as presented in this paper is the basis for

the construction of our tr.ansformations. In many cases, transforma-

tions can be built and researchers are now working on methcds to find

transformations by the symbolic computation of the MIT MACSYMA program

and by numerical methods. We also have a technique for providing
103



transformations, which are computed on-line along the system trajectory

D.O]. Furthermore, we are able to build a transformation by first

constructing the exact mapping on a lower dimensional submanifold of

. n  and then extrapolating off this submanifold using the partial

differential equations.

An application of transformation theory to the design of exact

nonlinear model followers is given in Section 2. In Section 3 of this
paper we present definitions and preliminaries. Section 4 contains our

definitions of equivalence for systems ajnd the partial differential

equations we must solve to find a transformation. In Section 5 we give

_ a constructive proof of our result involving transformations and present

an example. Also we exhibit a method of choosing the appropriate

Kronecker indices given the nonlinear system (1). An Appendix contains

the results of flight tests for automatic control of the UH-lH

helicopter.

2. Applications.

Before we begin our discussion of conditions under which trans-

formations from nonlinear to linear systems exist and how such

transformations can be constructed, we first present an application

of the theory.

Suppose we have a nonsingular transformation T mapping our

system (1) to a time-invariant and controllable linear system with

state variable y a (ylyz, . . , Yn) and control variable

v a Iv,v 2 , . .. , VM). We control the plant (the nonlinear system)

-'. by controlling the linear system. The proposed structure of the com-

" plete control system is specified in figure 1. Note that the design

is carried out on the "linear side" of the transformation, and in our

theory this linear system is in Brunovsky form.

Suppose we wish the output of the linear system to perform a

" particular task corresponding to a similar task for the nonlinear

system in x space. Linear design is used to find an ooen-loop

command v, , and we obtain the corresponding y, coordinates by

substituting v0  into the linear system. The transformation T maps

' from x space to y space and y is compared to yo to yield an

error ey. The regulator stabilizes out the difference using a control

*iv ; disturbances and variations in plant dynamics are handled in this
IC4
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way. The controls v. and Sv are added and transformed through the

inverse map T-1 to give a control u - (u1, u2, . . ., um ) which is

applied to the plant. By this we generate an exact model follower.

The difficult tasks of finding the open-loop-control and the regulated

control are performed on the linear system that make an easier design

0 possible.

The aerodynamic characteristics and operational requirements of

modern aircraft present the control system designer with requirements

that are increasingly difficult to solve using the standard control

system design methods. There can be strong, multiaxis, highly coupled

nonlinearities, and anticipated operational capabilities require that

the aircraft be precisely controlled over a substantial portion of

the flight envelope that encompasses the range of nonlinear aerodynamics.

Thus, the nonlinearity is an essential part of the design problem.

The design approach discussed in this paper and in reference [10]

has been applied to several aircraft of increasing complexity. The

* completely automatic flight-control system was first tested in flight

on a DHC-6. This test required the aircraft to operate over a major

part of the flight envelope, and the system performed well despite

disturbances and plant variations (see [14]). Next, the approach was

• applied to the Augmentor Wing Jet STOL Research aircraft and success-

fully flight tested [9]. Pilot inputs were incorporated into the

design method in [15]. The approach was also applied to control an

A-7 for carrier landing and tested in manned simulation (see [11), [12)).

• The design method is currently being used for the UH-lH helicopter.
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[ .":..; 3 . Pre l im ina r ie s .

. e now give basi c definitions and results from differential

". , geometry and from the theory of controllable linear systems.

For qr vector fields f and g on Rn  we define the Lie bracket

of f and g

(f,g) f 3i *ax 1 x 9

where ag/ax and af/ax are Jacobian matrices. We can introduce

- successive Lie brackets [f,[f,g]], [g,[f,g]], etc., and define

(ad0f,g) g

(adlf,g) - Cf,g]

(ad-If.g) a [f.Cf,g]]

- (adkf,g) - [f,(adk'if,g)).

A set of V vector fields {f 1 ,f2,. . . fr} on Rn  is
lnvclutlve if there exist e functions Yijk(x) such that

[fi,fJ](x) Z Yijk(x)fk(x), 1 S I, j - r, i # .
k-i

If f1.fz,. . .*fr is an involutive collection of linearly
independent vector fields and x0 e Rn  then by the Frobenius Theorem
there exists a unique r dimensional e submanifold S of Rn

through xo with the tangent space to S at each x e S being the

space spanned by fl(x),f 2(x), . . ., fr(x). We say that S is the

unique integral manifold of flf 2, . . .. fr through xo.

Suppose f is a Ir vector field on Rn and h isa

function with gradient dh. The Lie derivative of h with respect

"~to f Is

Lf(h) a (dh,f .

where ",) denotes the duality between one forms and vector fields.

*_ If , is a Var one form on Rn , we define the Lie ceriva.ive of w

with resoect to f
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- - - .. . -. - . . . . .-,

Lf() (" f)* +

where * denotes transpose and aw*/ax and af/ax are Jacobian
matrices.

The three kinds of Lie differentiations just defined are related

0 by the Leibnitz type formula

Lf(w,9) - (Lf(w),g> + (wf,g)>, (2)

with f and w as before and g as a V" vector field. For a Vm

function h we also have dLf(h) - Lf(dh).

.e introduce the Kroneck-er indices and the Brunovsky [2] canonical

forms. Consider the linear system

i y Ay + Bv (3)

where y and v are n vectors and m vectors, respectively, and A

and B are matrices of the appropriate size. For our discussion we

assume that A and 8 are time invariant, B has rank m, and the span

0 of {BAB, . .. , An'-11 is n dimensional. Set ro w rank B,

r j a rank (8,AB, . .. , AJB} - rank {B,AB, . . ., Bi
-, l<cj n-1.

* Obviously, 0 <rj m for 0 .n- and

n-1
F, rj - n .

We define the Kronecker indices 91,K2, K m by Ki is the number

of ri's that are >i and we remark that K, > K2 >•• and

*1 KIj an .
JO

Then the system (3)"is equivalent to a linear system (in Brunovsky

canonical form)

SAy +v (4)
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and B equals

0 ... .

0 0.... 0

1C I

10 .... 0

0 0 ... .0
S0. . . .0

K 2 O0 .... 0

010•.. .0

0 . . 0

00 0

K

• o00.... 1

Later, in the coordinate system we use (y1 ,y2 , ,Yn)

(T1,T2  . . ., Tn) and (vl,vl, . . ., vm) (Tn+, T n+2 ,  . . ., T. n ).

4. Equivalence of Systems.

The definitions of 3-transformations and X-related systems for

single input systems are given in [13]. We extend these definitions

to multi-input systems._ Let U be an open neighborhood of the origin

in R space.

Definition 4.1: A J-transformation T with domain U is a

diffeomorphism onto an open neighborhood of the origin in n+M which

is nonsingular and maps the origin to the origin.

In our theory U is essentially V x R, where V is an open

neighborhood of the origin in Rn, the state space.
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Let (xi,x z, I Xn , U ,U , . u and (y , • .,
n man

YnV1Vz, . ., v ) (-(T1 ,Tz , ., n.''Tn.- Tn m ) denote

:he state and control variables in U and T(U), respectively. Suppose

we examine two systems

Sl:i a aflxlx 2 , . . ., x ur)

and

S2 :y a b(Y 1 ,Y2 , . , YnVV, . .•, vm ) with respective state
trajectory functions # and *.

- Definition 4.2: The system S1  is r.related to the system S2

if there exists a e-transformation T on U such that for each state
- xo C V and each admissible ccntrol u the following holds. If we let

yo T(xo.u(O)) and T(#(t;xogu),u(t)) - (y(t),v(t)) whenever *(t;xooU)

is a state in U, then y(t) a *(t;yo,v).

If S, is X-related to S2 . by the transformation T with

domaih U we say that S1  is T-related to S2 . In fact, by the fol-

lowing statement it makes sense to say that S, is T-equivalent to S2.

In E13] it is shown that the .relation for single input systems is

actually an equivalence relation, and the proof can be generalized to
our present case.

Wde are particularly interested in mapping (via a 7r-transformation)

the nonlinear system
m

i, Ut) -lx(Q) + E ui(tl(xlt))

with f(O) 0 0, to the controllable linear system (4) in Brunovsky

canonical form with indices l,'e2, . . .9 % We set 0

.+ K, • .. , and % u KI + K2 + • + % a n.

' Theorm 4.3: If the system (1) is T-related to the system (4) on

U, then

a) aTJ/auk - 0, j - 1,2, . .. , n and k - 1,2, . ., r,

b) the m x m matrix {3T/auk}, J - n + 1, n + 2, . .. , n + m

and k 1 ,2, . .. , m is nonsingular on U,

c) the following partial differential equations hold on U.
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(dTzgi) - O,z 1,2, . ., oz -.,31 + I, .

aZ-1,02 + 1, . ' - l'ao- + l

n - 1 and i - 1,2, . . m,

(dTt,f) - T L+1,  - 1.2, , - I,0 + 1, . .,

2 01,2 + 1, .. .som - 1,. 1 +1,

0 . . ., n - .

(dTol,f + 1 uigi> , Tn.u
Jul* i-n

(dT-2,f + 1: uig 1) • T n2
1"1

* U

(dTamf + ug)- TnJ
t1

Proof. With xo,u,yo,v,o and 0 as in Definition 3.2, let

Y y,(t) - Tj(#(t;xou),u(t)) for j -1.2, . .. , n and

vj a Tn+j(#(t;xo.u).u(t)) for j - 1,2, . ., m. By hypothesis yj is

a state vector of system (4) with respect.to v(t) and

ay n !L Lxk +m ;T ;u
* ~ ~ ~ a -1= .... j*~ 1,2,., n

at ax .1a t'k-l k at i uk

Since the rows of Ay + By in (4) are independent of aUk/t,

k a 1,2, . .. , m, then ;Ti /;uk - 0, j - 1,2, . .. , n and

* k - 1,2, . .. , m. Because the transformation T is a diffeomorphism

by definition the matrix (3T/aukIs j a n + l,n + 2, . .. , n + m and

k - 1,2, . .. , m is nonsingular on U.

From the canonical form (4) we have

t I T+, a 1,2, . . ., - 1,01 + I, . . .,0 - 1,02 + I,

m 1  - ' 1 ,m 1  + 1, . . . n I I

* which is equivalent to
m

(dT,, + : uig 1) T
il

01.U
I, , ,. t q'? ;- ' ,,. , ,.."." , ..-.. ,-., , .,% .-. ,..,,., , ... , -.. ,,.,. .. . .. ,- . -. ,. - .' . .. - .-.i-



, for the same set of z. Since T.,T,, ., Tn . are independent of

UU 2 , . . u we find

(dT.,g ) - 0, - 1,2, . ., '7 - , . 1, . , cZ - 1,:..

+. . . - I +l, . .,n-1 , and
I • 1,2,. .. , Un,

and

(dTL ,f) T 1, 1,2, . . ., a - 1,al + 1, . .. ,a. - 1, a2
""..+ 'am_, - 1am-l + n

- The canonical fore (4) also yields

1 (dTaf + ut) I T n+i ,

l1

.

Ta1, (dT %I f. + ujg1) gsTn, 2

andT f dTf. uig 1) I *

and the partial differential equations hold for T.0

Note that

(dT.,1 f) a T _+ a Lf(T 1 )9. v 1,2, g, - 1,al + 1, . . .,a- 1,

a2 * 1, . .. , a-I 1, a3 . 1 + 1, n - 1

.4r. From this and the Leibnitz formula (2) we deduce (dT,,g 1 ) - 0 implies

.(dT 1,f,gt]) a 0 for i - 1,2, . . ., , and (dT3 ,g ) - 0 implies
(dT,(ad~f,g)) - 0 for 1 a 1,2, . .. , m, etc. Hence, the partial

differential equations (5) become

(dTl,(adJf,gi)) - 0, j a 0,1,..., ' - 2 and
I - 1,2,. . .

1 3(adfgi)) a0, J -0,1, . .c?- 2 and

1 12, . ,

13.2
4 , -6 -.. ..4, e 'p" . ' . '.' ., , , ' . . ' ,_ ,



OTC (adf~g 0, j - 0,1 , . .. , 2 and

1.-1,2,..

*m (6)
*(dTO ,f+ i ugi) , Concid.

m
*(dTn ,f + Z. uig 1> Tn.~

Since

T f (T -1

T n aL f(T -

the last m equations in (6) by the Llebnltz formula become

(dOf>) ± E ui(dT,,(adc'1f~g1 )) T l

(dT fa t ,u'2'

(dT0 f) t F, u(dToi,(adICl' g) T Tn~

where + is for Ki odd and - is for ci even, i *1,2, M . n

* n order to solve for u lU 2 .. Ur min these last equations

the matrix

*(dT +,(adIllf,gi)) . . .* dl(dl-fgm)

must be nonsingular.13



..

Hence, the partial differential equations that we solve to con-
struct a transformation from system (1) to system (4) are

(dT',(adjf'gi)) a 0, j 0,1, •., '1 - ' and

ja- 1,2, .. .,.m,

(dTa,,4 .(adJf,g1 )) 0 0, j " 0,1, . .. , '2 2 and

• 1 4.., j 1,2, . . ., in,

.1.

(dT',. 1+,(adJf,g1 )) 0 0, j * 0,1, . .. , - 2 and (7)

S1,2,

(dT,.f) ±t u(dTj,(adcllfg)) a Tn+I

(dTa If) i :Eu(dTO I + ,(ad l~ f ,gi)) -- T n+2 ,

(dT~ .f) t U (dTa_ (a ~f,gj)>) T~,.1

with the determinant of

.4 (dT,(ad'' 1 f'gj)) . . . <dTj,(ad1'f'g ]

(alTO, l,1 d'z2 " 1f,gt 1) (dT,,+;, (ad 2-1. , )>

. (7')

a.
.:

( dT,,,_. 1+1, (ad'c'Ir'f,g, ))  ... (dTcm _ 1 +1, (adn'I f , 9m))_

being nonzero.

The existence of solutions to (7) depends on the Frobenius

T.heorem mentioned earlier.

* p

"5"
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S. Existence of Transformations.

li Recall we defined the following sets.

C a {g1, f,g1l, . . (a C 1 f,9 1 )g 2 91fg 2 ), . . . I (a d'c' If 9g2)

., (ad ) f,g)g .

Cj {91,f,gJ, • • ., (ad'J'2f,gI),g 2,[f,g2 , . •., (adKj-Z f,g2 ),

gm,[f,g], . . ., (ad i'f,gm)} for j - 1,2, . .

We want to show that our system (1) is T-equivalent to the system

(4) near the origin if and only if

I) the set C spans an n dimensional space (i.e., the vectors

* in C are linearly Independent),

ii) the sets C are involutive for j - 1,2, . .. , m and
]j

iii) the span of C equals the span of C r) C for

j a3j9 9MS J - 1,2, . . ., U,

all on some neigh.borhood of the origin in Rn. First, we show that

condition I) is necessary and sufficient for dT1,dT2 , . dTn+m

to be linearly independent and conditions ii) and III) are necessary

in order that a T-transformation exists. A constructive proof will be

given for the sufficiency of conditions ii) and iii).

We compare the linear independence of the set of vector fields in

- C with the linear independence of the gradients dT1 ,dT2 , . .. , dTn

assuming that T1,T2, . . ., Tn+m  solve equations (7). Let

C4 c"c, .-. , c n  be constants and form the vector field

_t * C1g1  + c2 (fgi + " " + .+ c 1 (ad ll1fgi) + C a+1g2

+ caz 2Ef~g2) +. + c(adI-lfg2 ) + . . . + Cm+ m

+ cOm.+2[f,gM] + . . + Cn(adcmlf,g ) - 0

Taking the operation (.,a ) with each dTjdT2, . . ., dT n  and applying

equations (7) and the Leibnitz formula (2) until only

dTjdT l+ . . . , dTami1+ are involved, we find that the vector

115
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-'fields in C are inearly independent if and only if the eter .nant

of the matrix

,.LI . <~~d~l ' (ad"'_- f,g,.)) - < dT, ' (ad -ifi)

;q. ...

- iLf,gs nonzerToad.z"lf,g
SidTal+y, with cw

.(dTm. 1+,(adTmf.gj)) . (dT,.+,,(ad m f,g

- is nonzero.

, Similarly, with €onstaffts blob2, . •.. b n we define the one

i ',fo rm

b~dTI + bzdT2 + + bn dTn a .

Taking the operation (0,.) with each vector field in C, and applying

equations (7) and the Leibnitz formula (2) until only

dTi,dTc, 1 , . . ., dTM. 1, are involved, we find that

dT1 ,dT2 , . , dT n  are linearly independent if and only if the deter-

minant of the matrix
--': ,(ad4I-If,gj)) (dT.,+1,a4-fg)

.-.'(d.a +1T , (da "  f 9 )

I-.4 9 . . . d m. + , a m' f g )

(tiT1 ' (ad4i-' f,g m )  (dT I +1, (ad "1 f,gm))

..'> . . (dT m.1+1 ,(ad 1m' f,g , M)

- _

is nonvanishing.

Thus, for T1 ,T2 , . Tn m  satisfying (7),

,dT.,dT, dT n+m  are linearly independent if and only if the

vector fields in C are linearly independent if and only if the deter-

minant of the matrix in (7') is nonzero. We have used the fact that in

T a (T1,T., . . ., T n ., Tn+m ) only Tn&i ,Tn+z ,  T n.m

are functions of uj,u Z, . .. 9 U. Also we have shown that to find a
9.*

T-relation between systems (1) and (4) we need to solve equations (7)

wit'i the matrix in (7') -being nonsingular.

X -.



Next, we examine conditions ii) and iii) under the assumption that

dT 1 ,dT2 , ., dTn are linearly independent (i.e., under the equiva-

lent assumption i)). The equations (dT,,(adJf,gi)) = 0,

j = 0,1, . . ., , - 2 and i = 1,2, . ., m imply that the vector

.fields in C1  span at most an n - 1 dimensional space at each point.

If Ki > KZ we have that the span of C, equals the span of C, 0 C,

since the vector fields in C are linearly independent. Also we have

that the set C1 (thus, the set Clfl C) must be involutive with dTj

being a nonvanishing normal to the n -.1 dimensional integral mani-

fold of C, r) C given by the Frobenius Theorem. If

- I "KZ . . . = Ks (i.e., we say K, appears in C s times), for

some integer s > 2, then the vector fields in C1  span at most an

n - s dimensional space at each point from equations (7) and the linear

independence of dT1 , dTo,, +1, . .. , dT0s.1 +1. Again, because of the

linear independence of vectors in C, the span of C1 is equal to the

span of C, r) C. The set C1 (and C1 r) C) is involutive with

dT1 ,dT 1+i, .. , dTas_1+1 being normal to the n - s dimensional

manifold of C1 C C given by Frobenius.

For our present purpose the interesting equations from (7) are

<dT 1 ,(adJf,gi)' - 0, j - 0,1, . .. , - 2 and

i - 1,2,. . m,

<dTa +1 ,(adif,gi))= 0, j = 0,l, •. - 2 and

i =.,2, . ,

* • (8)

<dTom.1+1, (adJ f , gi - 0, j = 0,1, . "' Cm - 2 and

i = 1,2, .,m.

40 From the Leibnitz rule (2) we have

(dT.,(adJf'g i ) ) ,- <dT Z+1, ( a d
J  f , g

i ) )

6 and this can be used repeatedly. Thus, given a j, 1 < j . m, since
dT1,dT2 , . . ., dTn are linearly independent, the number of linearly

independent vector fields- in C. is n - (p/m), where p is the
3 k

number of equations in (8) for which the k in (ad f,g i ) is greater

0 than or equal to K - 2. This is exactly the number of linearly

independent vector fields in C. C17C. From the set TI,T 2 , . Tn
. 117



there are n - E(n - (p/m)] = p/m functions with linearly independent

gradients that are normal to the integral manifold of C. , C (or

equivalently of C).

Hence, the necessity of conditions ii) and iii) are proved. We

now state our main result and complete its proof. We must Keep in mind

that a reordering of the vector fields g1 •g2
• 

. •• gm has been done,

if necessary.

Theorem 5.1: The system (1) is T-equivalent to the system (4),

where the state variables x1,x, lie in a sufficiently

small open neighborhood V of the origin in R , if and only if con-

- ditions i), ii), and iii) hold on V.

Proof. The necessary part of the theorem has been proven. Thus,

we wish to construct a T-transformation given the three conditions

and remember that our transformation will be nonsingular by i). Since

the span of C equals the span of CJ C for j - 1,, . .. ,

we have that each C ri C is involutive and-work with only those

vector fields in C.

Before we build T we assume that the following conditions hold. -.

Suppose all entries when evaluated at the origin in the matrix (7')

above the diagonal are zero. After the proof is completed we will snow

that no generality is lost in making this assumption. Hence, the

T1 ,T2 , . .. , Tn m  that we define have linearly independent gradients

and the matrix in (7') is nonsingular if and only if the diagonal

elements in this matrix do not vanish.

We now construct a solution T - (TI,1T2 , T .. , Tn of equa-

tions (7). Since n+1 n+z ,  ., Tn+m  are found by the last m

equations in (7), we need only find solutions TI,Taod+, ., Tam-!+I

to the partial differential equations (8). Recall that first-order

linear partial differential equations are solved by reducing to systems

of ordinary differential equations. We now give the ordinary differ-

entlal equations to be examined and then choose our solutions

T. T,,. , Tt should be evident that these m functions

will not be unique.

Let s, be the numbor of times that K, - 1 appears in C (e.g.,

if 42 > K 3, then sI * 2); s2  be the number of times fc - 2

appears in C, . ., sK, be the number of linearly independent vectors

* in fg,,g2, ., gm, which by assumption is m.
-%e • US
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We introduce real parameters tl,t 2 , . n in the following

4 technique. 'le first solve

dx(t 1 )

dt, =

with initial conditions x(O) = 0 to find the unique integral curve of

* (ad41'1f,gj) through the origin in (x1,x2 , • . x n ) space. If

s, z 2, we next solve the system

dx(t1 ,t2 )

dt2  = (adl" 'f,g2 )

with initial conditions x(t1 ,O) = x(tj) to find the solution with

x(0,0) = 0. We continue in t-his manner s, - 2 more times finally

finding the solution of

* dx(tl,t 2 , . .. , tsl) a 1

." dtsl (ad 1 ' f,
5

satisfying x(tl,t2, . ., ts.. 1,O) = x(tl,t 2 , . , 1).

We now approach the partial differential equations (8). Ffnding

a solution z to the equation (dz,(ad41 2f,g)) 0 O is the same as

solving

dx (ado1-2 f,gl) v z 0
dts +1 ' ts0+1

1) 3t 1+1~-StS
with initial condttions x(tl,t 2 , . ., ts1,0) x(t11t2, •.,

We let. z denote the unknown function for each equation we consider.

If s2 > I for (dz,(adw1-2 f,g2)) - 0 we examine

dx (adK1-2f,g2  , az
dts5 +2  92) +2

0 satisfying x(tl,t 2 , . ., tsl+ 1,0) = x(t1,t2 , .. , ts5 +1 ). Doing

this s2  times takes us through the partial differentiation equation
(dz,(adw1-f,gs2 ) = 0 and parameter ts1~s 2

Next we consider (dz,(ad41 3f,g1 )) a 0 and take the system

dx = (adc1- 3f,gl) &zt 0dtsl+s2+l ' tSl+S2+1

119
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with initial conditions x(tL tz, ts. 0)... , ts *s z ,0

x(tl,t- . tss z ). We repeat this process s3  " more times

if s3 > 1 and end with the system

dx CaI-Bf,g s ) ;z

dtsl+S+S3 - (ad 3tS +Z+S3 
a

and parameter ts +s+s2S3  associated with (dz,(adC1
3 f,g )) 0.

53

Then we examine (dz,(ad41 - f,g1 )> i 0 and continue this process

in order, introducing all parameters tl',t 2, . .. tn  and ending with

the equations (recall s, + sz + + s,, n)

dx . az3FE~ gm a;tn
n n

satisfying x(tl,t 2 , . .. , tn-,O) a x(tl,t 2 , ., tn 1 ). In this

way we treat (dz,gm ) * 0.

We have constructed a mapping from F r. to ]n given by

(tj~t2, . . ., tn - (x1lt19tz , . .. ,I tn),xzl,tz,• . tn)

n ~ nnI. X n(tlvt2, • .. , tn ))

and taking the origin to the origin. The Jacobian matrix of this

mapping

ax1  ax1  ax1
at1  at2  atn

a2x a

at1  at2  nx

- I

;* at n

Laxn ax ax n

-it-, at2  atn

is called the noncharacteristic matrix. When evaluated at the origin,

its columns are (ad41 1fg 1 ),(ad"f,02 ), " lf'glgi " gn

the vector fields in C all evaluated at (0,0, . ., 0). Thus, the

matrix Is nonsingular and the above mapping (xi(tl,tz, •., tn),

x2(tl,tz, ., tn), .. , Xn(tltz, . . . tn)) is a diffeomorphism

on an open neighborhood W of the origin in Rn. We let V be a.

sufficiently small open set about (0,0, . .. , 0) in the image of W

"20
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under the mapping. Moreover, we can solve for "t1 t2 , ., tn as

functions of xi,x z , . ., xn by the inverse function theorem.

We now define the functions TI,T,+1i, . , am+ to solve

equations (8). By design, each maps the origin to the origin and is

V" on V. Let T1 = tj and note that aT1/ati a 0, i - 2,3, . . .,n.

We must show that (dTI,q) - 0 for every element q in C1C". C (this

is the same as the equations involving T, in (8)). From the Frobenius

Theorem we know there are integral manifolds of the vector fields in

C, 0 C. By our construction, for fixed tlt 2 , ., tsI as we let

Sts 1 +ltsl+, . .., tn vary we obtain such an integral manifold. Thus,

T, a tj is a constant on each such manifold and (dTi,q) - 0 for all

q in C, n C. Note that tj is the parameter associated with the

vector field (ad4I1lf,gl). Next, we define T,,+, - t, where t is the

parameter that was introduced when we solved dx/dt a (ad 21lf,g2 ). For

example, if s, - 2, To,+ , t2 = t, or if s, m 1, To,+, - t3 a t. We

must show that (dTcl+,q) * 0 for all vector fields q in C2C) C.

Since C2 () C is involutive, there is a subdivision of the set of

fndices tl,t 2 , . .. , tn  into 2 subsets S- {tlt2. .. , trI and

S a ftr+1r .r.2-*, tn} for some r so that t e S and for fixed

parameters in S we get integral manifolds of C2 n C when

tr+is tr+21,. ., tn  vary. Thus, T,1 +1  is constant on each such

manifold and (dT01+i,q) - 0 for all q c C2 n C.

We define Taz+l to be the parameter associated with the vector

field (adC3l'f,g3 ), and continuing in this manner, we introduce

T a3+1,T04+1, ..., Tom_,+, to solve (8). Also, we have

* (dTj,(ad"'f,gj)) # 0, (dT,1+,(ad2-2
1 f,g2 )) $ 0,

(dTOma1 +(ad~m'lf,gm)) # 0. By a comment near the beginning of this

proof, we know that our transformation is nonsingular because the

diagonal elements in (7') are nonzero.Ol

We point out how to redefine g1,g2 , • •., gm, if necessary, so

that each entry evaluated at the origin in (7') above the diagonal is

zero. This technique does not alter the hypotheses of Theorem 4.1.

* We take g, a g, and replace gZ by g2 - ej2gj, where e12  is

a constant so that the vector fields (adcl'If,gi ) and

(ad'If,gj - ej2g2 ) have'zero inner product at the origin. We call

this g2 - el2g, our new g2 . Next we replace 93  by

* g3 - e1 3g1 - e23g2 , where e13 and e23 are chosen so that the inner
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products of (ad4l"If,g1 ) with (ad4:"f,g3 - el3g1 - ez3g:) and

(ad'"f,92) with (ad'Z'1?,gi - e13g - e39z) vanish at (0,0, ., 0).

This g- - e;.g i  eigz  becomes our new g. We continue in this way,

.-. bg t take . , to make the obvious

vector fields orthogonal at the origin, and g, e:gi " eag "

is our new s.
Since T, a tj, dx/dtj a (adl lf,g). we have

. (dTj,(adcllf,g2)) - 0, (dT1 ,(ad"1'1 f,g3 )) 0, . ..

(dT,,(ad'll'f,g,)) - 0, all evaluated at the origin. Because
1 01+1- t. dx/di , (ad'Zi'fg 2 ), we find that (dT .+j,(&d"2"!,gj))

- 0,(dTff,.(ad'2"1 f,g4)) - 0, . . .,(dTql+,(ad '2-1f,gm)) w 0 when

(x1 ,x 2 , . . x n ) - (0,09 . . ., 0). Repeating this argument m - 3

*-, more times we show the entries in (7') above the diagonal vanish at the

origin.

An illustrative example is in order.

Example 5.2: Consider the nonlinear system

Ssin x0 0

-Sn x3 0 0

13 *X4 U1 1 +U2  0

5 + 13 s. 0 0 1

0 a 61

- f + U1g1 + u2g 2

on

Now we compute

0 COS X2 COS 1 3  0

-cos X3 0 0

,fg:) " 0 (ad2f,g 1 ) * 0 g 0

0 0

" " 00 . 0

Hence, C -g 1 ,Cf,gl,(ad
2 f,g1 ),gz,[f,gzj. spans a 5-dimensional space

on the set
1% 122



V a j(x1,x2,x3,x4,x5): - < x2,x2

The appropriate Kronecker indices in this case are c, * 3 and K, = 2.

We have C1 r) C - {gjEf,gj],ga,Ef,gz1} is involutive since

0

sin x3
0[g1 ,[f, g1 )) -

0

0

and all other Lie brackets vanish, and C.i C - {gl,g 2} is trivially

involutive. Hence, there is a transformation which maps our nonlinear

system to the appropriate Brunovsky canonical form.

We exhibit such a transformation for (xi,x 2 ,x3 ,x4,x5 ) in V by

the construction in the proof of Theorem 5.1. The solution of
dx/dtj a (ad2f,gl) with x(O) - 0 is xl(t 1) - t 1 ,x 2 (t±) " O,x 3(t 1) -0,•Ix(I d-dt -- 3(l ( -

x4(tj ) - 0, and xs(tl) - 0: Similarly, for dx/dt 2 a (f,gl] with

x(tI,0) - x(tj) we find x1(t,,t 2 ) = tl,xZ(tl,tZ) a -t2,x 3(tIt 2 ) - O,

x4(ti,ta) - O, and xs(tl,t2 ) a 0. For dx/dt 3 - Ef,g2], dx/dt, gj,

and dx/dts a g2  in that order and with the appropriate initial condi-

tions we have XI(tl,t.,,t3,t.,tS) n tl,X2(tl,tz,t3,t 4,ts) - -t2 ,

x3(tl,t 2 ,t3,t.,t s) Z t41,x(t1,t2 ,t3,.t4,t5) - t3, and

xS(tl,t 2 ,t3 ,t4,tS) U t5 . Certainly, the noncharacteristic matrix is

* nonsingular and solving for tl,tZ,t 3,t4 ,ts as functions of

x1 ,x2 ,x3,x4 ,x5 we find tl = x1,t2 - -x2 ,t3 - x4 ,t4 = x3, and ts " xS.

Then one such transformation T • (Ti,T 2 , . .. , T ) is

T2 
• sin x 2

T3  (cos x2 )sin x3

T- x5 + x3 - x10

T6 (-sin xz)sin 2 x3 + (cos x2 cos x3)(u1 + x2)

T7  u2 + 3x2(xs + x3) - 10x (sin x2)
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Given the systan (1) we choose the Kronecker indices in the fol-

lowing way. First we form. the matrix

m0

(adZf,gl) (adZf,gz) • . . (adZf,gm)

(ad'- f,g ) (adn-l,gz) . -(ad nf,gm)

We assume that all numbers we define are constant in some neighborhood

of the origin in ]Rn • Set a0 a number of linearly independent vector

fields in the first row; a, a number of linearly independent vector

fields in the first two rows, . . .; and an-1 number of linearly

independent vector fields in the matrix. Take ro - zo, r,

m 1 - 0, . . .•; rn-1 *a • n-i - an-2 and define K, to be the number

of rj with rj 1.

If necessary, we renumber g1 ,g 2 , . •., gm and see if the

hypotheses of Theorem S.1 are satisfied to determine if our system is

transformable.

In [3) the authors blended the local results for the single input

case with versions of the global. inverse function theorem to yield

global transformation results. Of course analogous global results can

be derived for the multiple input case with the local theory found in

this paper.

Another problem on which the authors have made progress is the

existence of transformations to time-invariant linear systems for time-

varying nonlinear systems (see [4]). We can also show that if a non-

linear system can be mapped to a linear system, then it must be
"reducible" to the form (1).

A conversation with Roger Brockett, Harvard University, on the

multi-input transformation problem proved valuable to the authors. We

wish to thank Eduardo Sontag, Rutgers University, for sending us a copy

of the paper [5).
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Appendix

APPLICATION TO A HELICOPTER

* The helicopter is represented by a rigid body moving in 3-

* dimensional space in response to gravity, aerodynamics,.and propulsion.

The state,

-x * (r,v,C,) T C X C R3 I x SO(3) x R 3  (A-1)

where r and v are the inertial-coordinates of body center of mass

position and velocity, respectively; C is the direction cosine matrix

of the body-fixed axes relative to the runway-fixed axes (taken to be

inertial). The attitude C moves in the Lie group SO(3). The body

coordinates of angular velocity are represented by w

The controls,

u6 U (u M'u P) T C UC: R3 x R(A-2)

where uM is the 3-axis moment control, that is, roll cyclic and pitch

cyclic, which tilt the main rotor thrust, and the tail rotor collective,
*1 which controls the yaw moment; and UP is the main rotor collective,

which controls the main motor thrust.

The effectively 12-dimensional state equation consists of the

0 translational and rotational kinematic and dynamic equations:
0V

S(W)C(A-3)

CS(w)

where fFand fmare the total force and moment generation processes,

and (x,u) are defined by (A-1) and (A-2).
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,he canonic model has Kronecker indices ,,2}and the vari-

ables are identified as shown in Figure A-i, where *represents

a scalar integrator, yS C R4 is the canonic control and E, is
the direction cosine matrix representing the heading of the helicopter.

V 4 V3 2 Y1

------ 13

3

Figure A-1. Canonic Model of (A-3).

We do not go into details of the nonlinear system nor the con-

struction of the linearizing transformation here. However, we mention

* that we have a method to build an approximate transformation and the
accuracy of this technique is illustrated through the simulation
results.

The experiment consists in automatically flying a trajectory

which exercises most of the flight envelope of the UH-lH helicopter

as shown in figures A-2 and A-3.

Unlike the coarse accelerations in figure A-3, the model accel-

erations (figure A-4) are smooth, as is the vertical velocity v 30

The second panel in figure A-4 shows the effects of neglected parasitic

effects in the construction of the linearizing transformation. As can

be seen the acceleration errors are quite small being less than 0.5 g.
The regulator controls these effects by means of position errors.
The resulting horizontal error is less than 6 ft; while the vertical

error is below 1 ft.

126
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01

- S Oyf

1IM flt

Iis f/

5 20 Us

00 f/S

Figure A-2. Experimental Flightpath Shown in Horizontal
and Vertical Planes.
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41
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RELATIVE TIME, s

Figure A-3. Time Dependence of the Coarse Inputs.

Y10; 20 MOOEL ACCELERATION '-

L'."-J4 4

".". -62 ACCELERATION ERROR
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10 ft er(12) POSITION ERROR

-10 ft

10 f/a S V30
1-- " ~MODEL VELOCITY

".'- ~-10 fir Il.0 100 200 300 400 500
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Figure A-4. System Response-Canonic Variables.
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The natural controls u = (U U9), shcwn in ficure -: re well

behaved.

', 5[ MCMENT CONTROLS .
o=- -

- _ _ - - -

z
-5 POWER CONTROL

z I

0 100 200 300 400 500
RELATIVE TIME, sec

Figure A-5. Response Natural Controls.

In summary, the performance of the system is good. Future tests

will exercise the system with more taxing trajectories.
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ROBUSTNESS IN. NONLINEAR CONTROL

0

Renjeng Su, George Meyer and L. R. Hunt

Abstract

A new design methodology for nonlinear plants using
transformations of nonlinear systems to linear systems is presently
being developed. It is the purpose of this paper to show that this
design theory is robust. If the linear system is asymptotically
stabilized by applying appropriate feedback (a well-known technique),0 then a control to stabilize the nonlinear plant is easily computed
t'rough that part of the inverse transformation involving controls.
Most importantly, all nearby plants (in the proper topology) are also
asymptotically stabilized using this control. Lyapunov functions
for nonlinear systems can be found using this method. A short

* discussion on the application of this design technique to the
automatic flight control of aircraft is presented.
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0

ROBUSTNESS IN NONLINEAR CONTROL

Renjeng Sul

George Meyer 2

L. R. Hunt
3

1. Introduction

Suppose we have a nonlinear system of the form i(t) - h(x.u)

where h is a (! function of the state xcR n  and of the

(m-tuple) control vector u. If we choose a control vector u0  and
if h(x,u ) vanishes when x a 0, does the asymptotic stability of

* the zero solution imply the asymptotic stability of equilibrium

points of nearby control systems (in an appropriate topology) with

the control u0  driving these systems? We work in some fixed set

in R n which contains the origin.
In our version of this problem we have a nonlinear plant that

* we wish to control. The matheatical model of the plant is

m
fr) x(t)] .,(tOgilx(t)] , L .Me

dt
-1

where f,gl . . . . g. m are vector fields which are e in an open

set W in Rn containing the origin and f(O) - 0. We assume

tQesearch Associate of the National Research Council.
2Researcn Ejngineer at NASA Ames Research Center.
3Research supported by NASA Ames Research Center under thie IPA
Program and the Joint Services Electronics Program at 7exas Tech
University under ONR Contract N00014-76-C-11-6.
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that there Is a nonsingular one-to-one transformation T mapping
our system (1) to a controllable linear system In the appropriate

Irunovsky canonical form (11. Thus, our system (1) transforms by

T:WxU 1- TCWUR')C Rn1 with T(0) - 0 into

(t) • Aoy + 3ov (2)

where y and v are the canonical state and control.

.- The design technique is to build a controller for the nonlinear

- system by designing one for the linear canonical system. For

aircraft we use !he canonical form to 4etermine the control to fly a

reference trajectory and to stabilize the system about this

trajectory. Using the transformaton (from nonlinear to linear) and

its inverse we obtain an exact nonliear model follower 12-41.

In this article we use linear feedback to asymptotically

stabilize the linear system about 0. and this In turn asymptotically

stabilizes the nonlinear system about the origin In Its state space.

We show that all systems close (in the topology we introduce) to the

mathematical model are stabilized (asymptotically) about

corresponding equilibrium points, and the stability holds for any

trajectory starting In some fixed compact set in state space

(of course. the usual linearization techniques are local in nature).

In this way we prove that our design technique is robust. At the

end of this paper we discuss applications of our aporoach to various

-4 aircraft and some flight test results which Indicate the robustness

of our technique in actual practice.

9. Lyapunov functions play a key role in our theory. If linear

feedback is used to asymptotically stabilize the canonical system,

then It is easy to construct Lyapunov functions, It is shown that

the composition of these functions with the transformation yield

Lyapunov functions for the nonlinear system

±m
i(t) a f;(xt)] *, ui(t)gI[x(t)l

. i-t

(which we Could also write as f * f Gu, G and obaving ovious

" ' definitions) with the controls u,. 1 * 1.2. .... m, corresoonding
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to the linear feedback appliec. If a nonlinear system is sufficlertly

close to the above system (in the el topology on a particular

Compact set containing the origin), we achieve asymptotic stability

for this nearby system.

We emphasize linear feedback on the linear system, but the

technique can be applied for many asymptoticaily stabilizing controls

for which we can find a Lyapunov.functlon whose level sets (sets

where this function is constant) shrink to the origin in the state

space of the linear system.

Section 2 of this paper contains a review of the transformation

theory for taking. nonlinear systems to linear systems. In section 3

we present standard definitions and show how to construct Lyapunov

functions using the transformation. Our main theory concerning the

robustness of the design.technique using transformations is proved

in section 4. Since the transformation theory exists for time-varying

nonlinear systems (see (5-61; Hunt, L. R., Su, R., and Meyer. G.

Time Varying Systems, article in progrels). we mention how to extend

our results to these systems in the last section.

*2. Transformations

We are interested in recessary and sufficient conditions to

transform the nonlinear system (1) to the canonical form (2).

Historically, theorems in this direction can be found in references

[(2] and (3], and in the'work of Krener (7], Brockett (8], and

Jakubczyk and Respondek [9]. Much of the material ;resented here is

discussed in references (10-12].

We begin by introducing the Kronecker indices and Brunovsky

canonical forms. Suppose we examine the linear system

• Ay + By (3)

where eRn, v¢Pm . and A and 8 are appropriately sized

matrices. This system is assumed controllable, that is, the span

of 18, AS, ... , An-1 ) is n dimensional. We set

r a rank B
0 -

r. * rank S. AS ..... AJE) rank(B, AE. ,j':Bl
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fr i and l S n - tad r tand rlS ri- 0 j n-i nl

It is will known that sysltem, (3) iS eqlu|ilent. to our linearI
Syvstem in Blrunovsky canonicaIl forem (2) with ai new control v, such
that

- Aoy 0  v

H re A 0 equals
A, 0 -

0 A2  •

L 0 . . . 0 An

with

. 0
.- 000..h
.4

A "o . . .. . .

A O OO.. ... .
0 a 0• •t

0O 0 0 • ••

<f5%'

and 8 equals

.-

ia
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FBI

Ba

.-

- where B is the Kcxm matrix whose only nonzero element is a 1
" - "th

in the last row and t column.

We define the type of transformations that are of interest to

us. A 4! transformation T • .T 2, Thorn) maps an ooen

set WwlR in R' ((xi, x2. Xn' I u, u.... ur (xu)
space) onto an open set in Rnmm

((Y Y2. Yn' n v, 2.. v) a. (y,v) space) containing the

origin, where W is an open set in R containing the origin, so

that the following properties hold:

* A) T(O) - 0;

ii) T1, T2 ... Tn  are functions of x only

and have a nonsingular Jacobian matrix in W;

ii1) T "+I Tn+ 2. .... Tn.m are functions of (x.u) and for

fixed x in W, the mum Jacobian matrix of Tn+ , Tn+ 2  Tn"M

* with respect to u is honsingular;

iv) T, - yl, T2 - y2 . ... . Tn y are the state variables

and Tn+1 a vj, Tn+ft2 " v2. . ,Tnm a vm  are the controls for the

linear time-invariant system (2); in other words, T maps system (1)

to system (2); and

* v) T - (TI, T:, .... Tnm) is a one-to-one map of WXiM

onto an open set containing the origin in (y,v) space.

If we fix the controls Tn+i, Tn+2' -" ' TnM' then

* (ut. Ul, U .. , us) a u is fixed, the transformation T is

:4 retricted to W, and the only coordinate functions involveo are

T,, T,, ... . Tn '

We need several additional definitions before stating the

theorem on conditions for the existence of transformations from
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reference (121. We mention that a method for constructing a
transformation is also available in reference [121.

If f and g are e vector fields on' R , the Lie bracket

of f and g is

-f,gj .

where ag/ax and f/3,x are Jacobian matrices, We set

(adof.g) .

(adkf.g) (f.g

(ad'f.g) • [f,[f.gJ!

(adkf,%) i .(aGk-f:I

A collection of ew vector fields hl, hP:. hr on ]in

is Involutive If there exist 1C" functions 'rijk with

r
(highij(x) . 'ijk(x)hk(x) , .S 1, r S I

4kel
'p,

We return to system (1) and define the sets

C a (g1,f~gl]..... (ad f,g,),

S.g,(f,g 23 . .. *,ad f,g92),

<-1

(ad M f,g0 )J
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C g f,g .... (a fg,).

g2,(f,g1 . (ad 2 f,g,),

gm . (ad J  g 9m)) forj •1,2 ..... m.

Theore% 2.1

There exists a transformation with properties 1) through v) if

and only if on W

1) the set_ C spans an n dimensional space,

2) each set C is involutive for j - 1,2, ... , m. and

3) the span of C i equals the span of C , C .or

0 j a 1.2. ... , m.

Theorem 2.1 as stated in reference [121 is local in nature

(it holds for some neighborhood of the origin in IN), but for the

sake of simplicity in notation we have-taken this neighborhood as

our set W. Global transformation results can be found in

reference [11].

* There is also a version of this theorem (Hunt, L. t., Su, R.,

and Meyer, G. Time Varying Systems, article in progress) for time-

varying systems which we discuss later.

Since the main topic of this article is the preservation of

asymptotic stability under small perturbations of transformable

• systems, we turn our discussion to stability and Lyapunov functions.

3.- Stability

Let i be an equilibrium state for the system of differential

* equations i a h(x), where h is el1 in some set W of the state

space which contains x.

Definition 3.1

The point i is a staole equilibrium if for every neighborhood

U of i in Rn there is a neighborhood U1  of x in U such

that every solution x(t) with x(O) in U. is defined and in U

for all t > 0. If U1  can be chosen so that in adltion,

lim x(t) ,
t-0
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then is as..mftoticallv stable. Given a compact set K
(, ~Containing i in its interior, i is called isvoctotica11ly stable

on K( if it is stable and every solution starting in K( converges

i to i.

Definition 3.2
Let V:U - R be a Continuous function defined on a

neighborhood U of i, differentiable on U - (i). Such that

(a) V(;) - 0 and V(x) > 0 if x ,,

(b) < 0 in U- Eii

Then V is a strict Lyoounov function for

Suppose we take a linear feedback control and apply tto

system (2) to stabilize (asymptotically) the system about the

origin. With the control substituted we have a linear system of

di fferential equations

where the eigenvalues of C have negative real parts. Choosing a

negative definite matrix Q, the equation

CaOP + PCO- Q ( denotes transpose)

yields a unique positive definite solution P, and

V(Y) - yPy

is a strict Lyapunov function (see ref. (131, p. 51). We remark that

the level surfaces of this Lyapunov function shrink to the origin.
N y. * "2. a T T are functions of x and

thuS V depends on x. Coouting, we find

V U .--I i *i ;"
;x1 isl \Jul /T

1.42
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j.1 j Jul 

which we know to be negative away from the origin in y space.

Hence, V is a strict Lyapunov function for the origin in x-space,
the system being (1) with u corresponding to our linear feedback
control. We new illustrate how u a (u , u2 ... . ur) is computed.

* L e t 0 " ! - 0 2 " ! + 2 , . - , 'I - -, + 2 + " -- n

From reference (121 we know that U u2 . ... . Um  and

vI, vt. ... . v.- are linearly related by the equations (here (-,.)

denotes the duality between one forms and vector fields)

*• m

(dT a!f) +E ui (dT i~gt1 - v

J1

m

(dTT3 2f) +": ut (dT 2'g1 ) " v2 (4)

Jul

m

* (dTn f) +E ui (dTn .gi) Vm
9-l

and the coefficient matrix for u1  is nonsingular under the

conditions of Theorem 2.1. Knowing our transformation and the

* feedback controls v', v2. ... . vm, it is easy to compute

Ul, U2 - ... , Um .

Using Lyapunov's theorem and substituting u1, u.. U

into system (1), the origin is asymptotically stable. Morever,

if K is a compact subset of W containing the origin and K
0 (the boundary of K) is a level set of V[y(x)), then the origin is

asymptotically stable on K. This follows because T (and T-1)

map level sets to corresponding level sets, trajectories to
corresponding trajectories, and the origin to the corresponding

origin. We state this as a theorem.
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Theorem 3.31
Suppose we have a transformation T Supping system (1) to

System (Z) with properties 1) through v) holding on an open sot W

containing the origin in x-space and we use linear feedback In
.v-slNIce to asylprOtically stabilize the liner system (etgenvalue.-

hiving negative real pr ). Any stritct Lyapunov function *V(y)

for the linear system is a stric't LyapunOv function Y(y(x)] for the

nonlinear system with the controls corresponding to those of linear
feedback. Moreover, this nonlinear system has the origin as an

.a- msptotically stable equilibrium point on any compact set K whose

boundary is a level set of V~y(x)) and with K C W.

Of cour%*. by taking different Lyapunov functions we can find
other sets K and possibly add to the set of points for which

solutions starting at tfiese points tend to the origin.
It is appropriate to Illustrate this method of constructing

*- LyapunOv functions by an example.

. Examle 3.4

We take the nonlinear system on R

i.';. 1 0 1 ull f Ug*

with W a ((xx 2): --/2 < z < %121. an open set containing the

origin in R2.

It Is shown in reference 114) that the hypotheses of Theorem 2.1
are. satisfied and that one transformation on Wd is

e* a""...T, x,

T sin x 2

T (cos x:)u

. ,'he canonical linear system is

144
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and v -y! 2 Y2 places the eigenvalues at -i-] and i.;-

We obtain

[Y21 1- -12J['Y12

With

[0
we solve C *P * PC w Q to find

0 0

Thus, V(y) a y*Py Y1 Y I
2

4 Yy 2 + 'f Y22 is a Lyapunov function
for ; - C0y at 0.

Ecuations (4% in this case become

O 'dT2,f) + u (dT 2 ,g) 8 v or

(cos x2)u - -2yj - 2y2  -2x, 2 sin X2

Solving for u we have

" • 2 x ,
* C 2 tan X2

wnich takes our original nonlinear system to

o L ].. Zxsin 'z 1.. i x,
- COS -- : 2 tan x

o*J

.1.

(u 
14 5
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'..

i:' ~. The function

Vfy(x)a x'2 ,x sin xz + 3 (slnaX.

is a strict Lyapunov function for the origin. We have derived

asymptotic Stability for-any compact set K with a boundary which

I. & level set of V(y(x)1 and which is contained in W.

'e check the eigenvalues of the linearization of the nonlinear

- systm

* . x sin '2
[x: CO cos a"" " n x2.

at the origin. The Jacobian matrix of the right-hand side

evaluated at the origin is

[-' 2

Hence, the etgenvalues are exactly those of the linear systm after

linear feedback controls. We snow later that these etgenvalues are

preserved In general, which is an important step in our robustness

theory.

4. Robustness

We will now prove that the method of design using

transformations of nonlinear systems to linear systems is robust.

First, we need a topology on the set of systems of the form
- * h(x), that Is, a topology on the set of vector fields.

Let (K) be the set of e, vector fields an a compact set

K W .  e define the c-nrm iIhti. ef a vectcr 'eld hc(K;

to be "he-east upper bound of

h(x) , h(x )U
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for xeK. Here is the usual norm on Rn , Dh is the Jacobian

matrix of h (we also denote this by ;h/ax) and li ;I is the

usual operator norm on the set of nxn matrices L(mn) (see

ref. [15], page 82); that is, for ScL(]Rn), I SIm= max[lSx!:1xl < 1).
Two vector fields In I(K) are close in this topology if and only if

their corresponding coordinates and the first partial derivatives of

these coordinates are close in the usual topology of uniform

convergence on K.

* For an open set W C n and hcL'(W), the el vector fields

on W, we can take the norm I h 1  defined In the same way as above

with the understanding that I1 h Il1 s - can occur.

Next we examine the linearization of the nonlinear system (1)

about 0

m
i(t)- Fx E u1 (t)gi

o  (5)

where F is the Jacobian matrix of f at 0, and where gic is the

constant part of gi, I a 1, 2, ... , m, at least one of which is
nonvanishing by assumption. We rewrite equations (4) in the vector

no tation

u • H,-I(x)v + H2 (x)

Linear feedback v H Ny yields

U a H-'l(x)Hy + H2 (x)

Since f(O) s 0, the linear part of Hz(x) is of the form 6x.

Ignoring Qx, since T(0) a 0. the only terms of
y (y, Y, ... yn) a (T1, T, ..... Tn) that have an effect on

the elgenvalues at 0 in system (5) are those contributed by the

linear terms of TI, T,, T....T in the x,, x.

* variables.
We are now able to prove the following lemma.
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.-.-. ,Lamma. 1

, _.: ""If linear feedback is applied to tne linlear system 'kZ), than the

'/"-" resulting eigenvalues are the same• as those of theo litnearization (5)

of the nonlinear sytm(1) atthe orgi wthU1 . U

- substituted.

It is apparent from the distussion preceding the statement of

this theorm that we have reduced its proof to that of a lnear

syste ~e the transformations involve linear coordinate changes

and feedback. We take the linear system

- a Fx + Gu

and let z a C'zx and u N ,'(O) w O X Ow + Ox. Our linear

system in z coordinates with control vector w becomes

-* •C"( GQ)Cz + C"GOw -

Setting w a HZ, wl|ch is a feedback on z-space, w* obtaift

a (C '(F * Gi)C + C'GMIZ

Plugging u Ox4 OHCx "  into Fx - Gu, we have

x a I(F GO) * GDHC

Since

d4t.(A - CC(F * Q)C - C-1GoH) a

det.(A I -(F G ) GDHC')I

our theorm Is proved.=
The statement in the lema is not sur;risinq when we realize

t.4a t since f(O) • 0.

k k(ad fF
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for all k, where F and gi are as in equation (5). Concerning

eigenvalues at the origin, the effect of the transformation T on

the linearization of system (1) is the same as that of a

transformation that takes system (5) to Brunovsky canonical form.

We take the following results from Chapter 16 of reference (151.

Theorem 4.2

Let h be a e, vector fild on W C R n  and 4cW be an

equilibrium of i a h(x), such that Dh(;) is invertible. Then there

* exists a neighborhood U C W of ; and a neighborhood 71 C V (W)

of h such that for any ;ell there is a unique equilibrium zcU of

z- ;(z). For aRy c > 0 we can choose It so that ( - xI < C.

Theorem 4.3

Suppose that ; is an equilibrium point for x h(x) and

• 0h(i) has eigenvalues with negative real parts. Then in Theorem 4.2

71 and U can be chosen so that if cln , the unique equilibrium

'EU of z ; h(z) satisfies Dh(i) has eigenvalues with negative real

parts.

The following well-known result is found in Chapter 9 of
reference (151.

Theorem 4.4

Let ;cW be an equilibrium point for a a h(x) with Oh(i)

having negative real part eigenvalues. Then there is a neighborhood

U' C W of i such that all solutions of x • h(x) starting in U'

* converge to ; thus, i is asymptotically stable.

This theorem is a shortened version of the first theorem in

Chapter 9 (see ref. [15). If every eigenvalue of Dh(i) has its real

part less than -c, c > 0 it follows from the proof of that theorem

that the set U' depends on c and continuously on h(x).

It is clear that if the hypotheses of Theorems 4.2 and 4.3 are

satisfied, we can choose the set 71 in Theorem 4.3 so that there

exists a constant c > 0 so that the eigenvalues of Dh(i) have real

parts less than -c for all hcJl . Since we are working with the el

tooology on the set of systems, the way in which we choose the sets U'

in Theorem 4.4 depends continuously on elements in 71.

* If the conditions of Theorem 4.3 are net, then we can choose

1 and an open neighborhood 0 C W of so that the following

properties 4old:

149.
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(m) for any Zen there is a unique equi'ibrium
" '""ice of i a Z(Z) and 0 (i) has otgenvalues

* ".* ,ith negative real parts. and
(AI) for any h€cA all solutons of i a ;(z)

starting in 0 converge to z.
,- . In our application, h will be f . -4 u*g, where

- ui I sI. are controls corresponding to a linear feedback givine

eigenvalues with negative real parts in the linear system (2), and
; - 0. Of course, we assume that the nonlinear syst m (1) is

." - transformable far xct to the linear system, as in Theorem 2.1.

-.- -From section 3. heorem 3.3, we have a strict Lyapunov function V
for 0 and the system

%., x ,,f 4. Ug 1

..

and we take K to be a compact set contained in W whose boundary
is a le e set of V(x). We now state our main result.

Theorem 4.5
.-*' tWith controls ut. u2,... , u* and compact set K as just

mentioned, there exists an open neighborhood 71 of f + Li=I uigi

In V(K) such that
() for any h0A there is a unique equilibrium

.* : point UaK 0f ; (Z), and
(V) for any htA all solutions of 2 (z)

starting in K converge to ; that is,

i Is asymptoticlly stable on K.

Proof

Lae 4.1 Implies that the system •f + - uigil Wth u
corresponding to Our asymptotically stabilizing linear feedback

in the linear system, has etgenvalues with negative real parts in its

~ .. ~,linearization at 0. From a previous discussion we know that there
is a neighborhood nt' in ;:(K) ( U(W) in orevious results can be

replaced by K)] a f *,! uig I  and an open neighbornood 0

in An of 0 with our earlier conditions (a) and (.) holding for

"!' on 0..

Choose a co act annular region .2 C K, whose outer ounoary

is the level set ;K (tne boundary of K), and wnose Inner woundary
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is another level set of V contained in 0 and distinct from 0.

We recall here that our level sets of V do shrink to the origin.

Because V is a strict Lyapunov function of x a f + V-1 "191.

we have V - (dV,f + I-1 ulgt ) < 0. Since we are working in the el

topology on 10(K), we can choose n C It' so that V a (dV,h) < 0

on a for all Zell and i is the unique equilbrium point for

in K. The condition that (dV,h) < 0 implies that the solution

curves of i a ;(z) intersect the level sets of V in r,

transversally (the tangents to the solution curves are not tangent to

the level sets at points of intersection) and must be moving from

outside to inside, since those for the nearby system

x f + 4 1 uigt are transversing in that direction.

Hence, if we start with any point in K with a solution of

i -_h(z), we can reach the set 0. Then condition (s) guarantees

that we converge to 1, and statements (s') and (6') are proved.,

In practice, suppose the plant is .A system i - Z(z), where

:7t is driven by the controls u1, 2, ... u*. Then Theorem 4.5

proves the robustness of our nonlinear design technique.

We conclude this section with a remark concerning systems which

depend on parameter values. Let system (1) depend on a parameter 6,

and assme for 9 a a0  we have a transformable system. Suppose we

design with the parameter value o  and transformation T(e ).

We constrict a Lyapunov function V(y) as -before and compose with

T(oa). The sensitivity.of the asymptotic stability of

m

a(t) • f(x(t),e ( )g

3Tu (6 ~ g ax uit),ik

11

can be viewed by ezamining the 6 derivative of

n[ r r •

[ul .i I. .
where g1k(e) Is the k h component of g1 (x(t),a] and similarl~y

for"fk
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S. Time-Varying Systems

Consider the time-varying nonlinear system

,,. .imt a f(x.t) t Uit)9,fA.t) (6)

with f. g1, 2, ... g being vector fields on w. wnich are e
- in all arguments. Also assume that f(O.t) * 0 for all t. we want

a transformation T a (TI, T2. ... , Tna) that aps an osen set
in R R0+(1 , 2 .... , XnU 1, U. . . Ut) space] containing
the origin in RnqQ onto an open set in

r4 (yj y2. ymv,,. v2 . vm, - (TI.Tz. TnMe)

spacel containing the origin and takes the time-varying system (6)
to the time-invariant linear system (2).. We also want conditions
analogous to i) through v) in section 2 to hold, except here we maust

remember that T is a function of time t. Thus, in each of I)
through v) we add the phrase "for every t."

Our Lie derivative is now replaced by a time-varying Lie
derivative. Suppose f and g are ' time-varying vector fields.
Then

(raf.0) *g

(r'f~g) *(adlf.g)*

(rkfg) k ['f,(r f,g)J

In this clase we define noew sets C(t) and Cj(t),
" 1. 2. ... . m, by replacing (ad k fg) in our definitions for C

and C by (.k f,g). The following result is found in Hunt, L. R.,

Su, R., and Meyer, G. (Time Varying Systems, article In progress).

152
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%' Theorem 5.1

There exists a transformation T satisfying our new conditions

I) through v) if and only if on some neighborhood W of the origin

in R
n

1) the set Ct) spans an n dimensional space for

each t,
2) each set C (t) Is involutive for j - 1, 2..... m

and eacn fixed t, and

3) the span of C (t) equals the span of C (t) n C(t)

for j.- 1, 2, .... m and each t.

It is shown in Hunt. L. R. et al. (article in progress) that

the transformation T is constructed, with t behaving as a

parameter.

We apply linear feedback to the time-invariant linear system (2)

to asymptotically stabilize (with real part negative elgenvalues)

this system. We substitute the correlponding controls Into

equation (6) using equations from Hunt. L. R. et al. (article in

progress) similar to those in equation (4).

0) Let V(y) be a Lyapunov function for the linear system (2) as

in section 3 and compose this with the transformation T to obtain

*; V(y(x.t)]. Since V[y(x,t) <0, a solution in xj, xZ ... x., t

space is passing through the level sets (the inverse images of

the level sets of V(y) under T) transversally and from the outside

* to the Inside. SuppoSe there are positive definite functions

VI(x) and V2 (x)(V 1 (x) has continuous first partial derivatives,

V 1 (0) - 0, Vi(x) ? 0. 1 - 1.2) on some compact set K in

x1. xZ, ... , xnM space with the origin in its interior. Suppose

also that the transformation T applies to K for all t and

* ) V.(xi 5 V xt)] S V2 (x) for xeK and all t. By Theorem 4.2

from reference (13) we know the origin is uniformly asymptotically

stable for the system (6) with the controls ul, U2 . . ... . um

substituted. In fact, any solution starting at a point in the region

bounded by a level set of Vty(xt)) with xcK for all t must tend

to the origin in x-space.

There are many results concerning stability of time-varying

systems that we could mention. However, we wish to make the

following remark concerning robustness of time-varying systens.

Practice dictates that a theory is to be applied in finite time.
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Let us assume that the transformation T applies tc an annular

region A about the t-axis whose outer boundary and inner bounoary

are nontrivial level sets of Yb(x,:t). Suppose we restrict this

region to a finite time interval. y tO.to], to > 0. If a system

i a h(x.t) is sufficiently close to system (6) (with ul, u 2 , u

applied) in the obvious eL topology for vector fIels on our

Struncated annulus A. then the solutions of i P h(x.t) starting in

this set travel transversaily througf, the level sets (it intersects)

contained in A moving from outside to Inside. This parallels the

related results for time-invariant systems in section 4.

In conclusion, we have shown i n this paper that the process of

stabilizing a transformable nonlinear system by stabilizing the
linear system to which it maps is robust. If the mathematical model

and the actual nonlinear plant are sufficiently close, our design

scheme using transformations is vwid, and Lyapunov functions can

often be found.

The design technique discussec has been applied to several

aircraft of increasing complexity. The completely automatic flight

control system was first tested on a ONC-6. The reference trajectory

used In the flight test exercised a substantial part of the

operational envelope of the aircraft. Despite disturbances and

variations in plant dy wmics, the system performed well (see

ref. [161). Next the technique was applied to the Aupentor Wing

Jet STOL Research aircraft and the successful flight tests are

reported in reference (31. Methods for providing pilot inputs to

this design wer examined in refrnce (171. Application of this

design scheme to the control of an A-7 for carrier landing and

testing in manned simulation is reported in references (181 and '191.

The design methadology Is currently being applied to the U-IH

helicopter, again with the substantial portion of the operational

envelope of this aircraft being used.
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Global Transformations of Nonlinear
Systems

L. R. HUNT.IStEM3ER. IEEE. RENJENG SU, .ND GEORGE MEYER. MEMBER. IEEE

AA-ir. -Recent re'ults have c, tabli. td nocessanr and sufficien con. 5) T is one-to-one (with (T. T,. •.7,) beina onet-o-one
* dition% for a nonlinear syiem of the form on U).

That is, when can we map a nonlinear s'ystem in
x1.,xz,..,x,,u space with (x1 ,x:.-.-.x,) L to a linear

%ith Ati - 0. to be locally equi,alet in a neighborhood of the origin in R" Xyst m inT ,, sp c w (x, x:.- t - vx.) G U to e

to a coinollable linvar s)'.em. We combine thee results with several system in TI, T, . T,- space taking the system () to the
tvr,ioni, of the global inmerse function theorem to prove sufficient condi. system (2)? In (2) we think of T,,, as the -ontroL. and our
tion,, for the tran-fdormation of a nonlinear sysem to a linear system. 1n linear system is in integrator form on n-dimensional space.

S duin. %n %e introduce a technique for consinaring a transformationw under Krener [I] solved the problem of which nonlinear sys-
No. asmprions chih (s.pf.zl...d'. } span an n-dimnnional tems can be transformed to linear systems. usirg a change

'ace and thai (z.l.f. e .-. (ad :[, is an inoluriteie~ -. of variable without feedback. Brockett [:, gave sufficient

conditions for a rea!-inalytic nonlnear s'.stem with equi-

1. INTRODUCTION librium point at the origin to be locally equivalent (using
coordinate changes and feedback) to a linear system in

0 rITE CONSIDER nonlinear systems of the form integrator form. The third author and Cicolani [3]. [4]
presented sufficient conditions for a nonlinear system (per-.

(l) - f (x())+ u0t4g Ot)) (1) haps time varying) in block-triangular form to be trans-
formed to a linear system. These results are presently being

where f and g are G' vector fields on an open set U in R, applied in the design of automatic flight control systems
containing the origin and f(0) - 0. The problem of interest for aircraft.
to us is finding sufficient conditions on U, f, and g so that The references just mentioned led the second author (5)
there exists a I3 transformation T- (7,, T2 ,. -, T,., ) from to prove necessary and sufficient conditiois for a local
an open set in R "  to an open set in R "' with the diffeomorphism (mapping origin to origin) to exist which
following properties: carries system (1) to system (2). The transformations in-
1) T(0) - 0; volved contain both feedback and coordinate changes and
2) T,. 7,,.- .. T., are functions of x,. x,.-- -,x, only and are more general than those found in [2]. Proofs depend on

T maps U in R* into T,. 71,-. , T space with a nonsingular' the solution of an overdetermined system of linear partial
Jacobian matrix: differential equations.

3) T., is a function of x,, x2 ,--*.x,, u which can be We combine these results with global inverse function
inverted as a function of u and where (x,. x2,-' ,x.) e U: theorems and techniques in partial differential equations to

4) T1, T:. .. 7..i satisfy prove global theorems for transforming a nonlinear system
* to a linear system. Local results tell us that there is a

. Tneighborhood of the origin which is mapped under a
transformation, but give us no information about its size.

.7", A brief history of global inverse function theorems is

appropriate. Hadamard [61-[8] proved the following result.
A E' map F: R' - R' is a diffeomorphism onto 74" if and

-jr.7", - T_ 1; (2) only if its Jacobian matrix is nonsingular for each x -R'
and F is proper (i.e., inverse images of compact sets are

Manuscript recetwed June I. 198: revied March 22. 1982. Paper compact). Palas [9] gave a proof of this theorem, and
rec.mmended b% A. N Michel. Past Chairman of the Stability. Nonhn- certain variations of inverse function results art presented
car. a.nd Dn..tn'utcd Systems Committee. The work of L. R Hunt was in [10].
,up.-,rtcd b-. Amts Research Center. NASA. under the IPA Protram and
Inc ](i't x Electronics Program. Texb Tech Un ,ersicy. under The question of the existence of global inerses is treaied
ONR Contract N(g ,Y14.,* 136 The ork of R. Su %as iupported bv in the area of systems theory by Wu and Descer -'I!! and
me, Rc r:h C nter. NASA. and the National Rescarc"1 Council. " A
L. R Hunt %,a on ;c,, at Ames Re.earch Center. NASA. '-Ioffe:t by Kuh and Haj [1I]. With regard to the .rcbiem of

F id. CA 4,0..35 4e i, 4:th Texa. Tech LUniersit,. Lubhock. TX '94&19 global observability, we find the papers of Fit's [131,
R. Su %, 4 %h Ame, Research Center. NASA .Moffett Field. CA. He is

m,..-4 :h :hc Dc.&rrncnt of Electrical En inecnng. Texas Tech Unier. Griffith and Kumar [14]. and FujisaA and Kuh L-4i1.
L-;nbock TX '4Soii o e,Gt, \ ,-c. is ",0 Amsener SA feFApplying the results of Fuiisawa and Kuh and of BeraerG %lccr j, %::,h Amc, Retcch Center. NASA..Mocfrett Field. CA

44)3 and Berger [101. Kou er al. f 16] presented dheormes on the
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0,- s biitv usinv inverse 'unctions. For A se- of "vecor d sd

recent results o. global inr.erst func'ions. -Ae :fer. :o the .nvoiu;t:e :f there exst n. : nc:ins ' ".
papers o S-ndburz [ 17] and M:lI:r [16].

Gi'en veco: fieldsf and ,g. w6e denote :he Lie bracket of [f = y (.r )f. (X . 5 1.
/ and b% (f. g. . and d:efile inductie!v

(df. ) - [.[f.g]],.-. This definition leads to a version of the fa.oi Fr-rbc.:is
theorem.

(.d.'. ' Theorem 2.1.- Let ff. f,.. -,f, be an inolutve coiiec:ion

Given system (1), we suppose that the n X n matrix ,itb of 2' linearly independent 'ector fields on R. Given any
columns g,[f. g]....,(ad4 -'f. g) (which in this paper w point x0 E R*. there exists a unique maximal r-dimensional
call the controllability matrix, even though for nonlinatr 12 submanifold S of R' containing x0 such that the
systems controllability car. certainly depend on other Lie tangent space to S at each x a S is the space spanned by
brackets than these [191-211) is nonsingular at every poi f(x),:(x).- ,(x); tha" is. S is the unique intral
in R". and g.ff. g],... (ad"'-f. g: axe involutive o ". manifold of. f.. .1.. through x0 .
We introduce a certain matrix ,ith the property that if i We now define the Lie derivative of a functIo with
satisfies the ratio condition found in [161. we show the respect to a vector field. which takes functions to ur.c:ions.

[ existence of a transformation T- (T,, T.,- .. , ) from Let f be a k.= vector field and h a Gz funcion., with
R"' tc R" with (T,. T....., T, mapping A" to R a(and gradient dh on R. Then the Lie deritveuecf c'*, r respect
haing a nonsingular Jacobian everywhere on R") such to f"s

, that the system (1) is mapped to the system (2). Under L,(h) - (dh.f)
these assumptions the map is one-to-one, and we have where > denotes the duality between one-fo.,s and
glooal invertibility.

U I C is an open subse, of R" containing the origin, we vector fields (the cotangent bundle and tangent bundle if
give sufficient conditions for there to exist a transforma- one is working on a manifold M). This duality is easily
tion T- (TI. T... 1) with (T, T,,. .7) mapping U understood-if we set

one-to-one onto its image. / \ =

In all cases. the proof of the existence of our transforma- dxi' $  I
tions is constructive in natuare, which should be useful in I "/i-
future applications. If/is a G vector field on R" and w is a Cl one-fcrm on

R", i.e.. ci-w, I+ &;.dx . ... +,dx,, w, being J'-

II. PRELIN INARIES functions, we have the Lbe deriative of w with respect to f

In this section we discuss some basic definitions, a
classical result from differential geometry, and the basic L1(ax

ideas of the theory in [5]. We begin by introducing three where * denotes transpose and a,/.ax and al/ax are
kinds of' Lie derivatives and a Leibnitz-type relation be- Jacobtan matrices. Such a Lie derivative maps one-forms to
tween thean. An enlightening discussion of these Lie deniva- one-forms.
rives and their applications in system theory is presented in The above three kinds of Lie differentiation are related
the paper of Hermann and Krener (22]. For basic refer- by a Leibnitz-type formula

* .:'" ences we suggest [231-{25, and [26].
*'-'-. rff and g are 1.= vector fields on RN (actually on any L/(ca, g}(L(a).g)-( .[f.gI)
*-... differentiable manifold M). we define the Lie bracket offd

and w nd w before and g a G,0 vector field. Aiso,
dL1(h) - L1(dh) with h a 2= function.

g] -9g We examine the problem of finding a map with nonsin-
ax ax gular Jacobian matrix of the system on R"

where agl/ax and a8/ax denote n x n Jacobian matrices. t(l) -. f(x(t)) u(t)g(x(t)) 2)
This L'e bracket (f. g] is also a .ector field on R' and
represents the Lie derivative of one %ector field with Ie- with f0(0- 0 "o -he linear system
spect to another. Of course. we can also discuss successive - 7"

.. Lie brackets 'f.j. g]]. [g.[f.,g]]. etc. We define

(ad'f! f) - ,.,

From [5] necessary and sufficient zonditwons :or e to:a
c'f.) " [ f'. d'd . existence of such a -map are :-hat

,,' , ... .. -,, -.- .- ..- ... ..- ... .... . . . . . . -. . . . .-... . ... . . . .. . ..
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i) the controllability .natrx i..gi...('d"- .g . it is shows in [51 that T..T.. ... T_ ha, n jinn:"
has rank n in some neighborhood of the onzin in R (%ith independent _Z-a3ietS L and only if the contrliabi!i:%variables xf ,n on,, x, th and marox b, 2",
variables x1 , x,....x ), and manx (_.f. g,.. .. (d f. z); has rank n if and on!,. 11

ii) the set of vector fields ,g.f. g].- (ad" g)' is we have
involutive in some neghborhood o the cri n in R'.

Note that by i) g,[f. g,...(ad"-2f. g) are linearly in- (d7 1.(ad'f. >)) = 0. k = 0.1...n -n
dependent and by ii) there is an n - 1-dimensional integral (dT,. (cd -. g)) 0.
manifold of this involutive set by the Frobenius theorem.

The questior arises s to how the existence of a local (in If the last equation in (6) is satisfied, then we can solve
the neighborhood of the origin) invertible transformation T for u in the last equation in (5) since (dl',. g) =

'0 is shown in (5] under Assumptions i) and i). Such a map (- I)"-'(dT,,(ad"-'f, g)) as before. This, together with
T -(T, T2,. . ., T, ) must satisfy the following partial the fact-that T1.7,....,7, are functions of x, x,,....x ,
differential equations: only turns our-problem of finding a global transformation

+T + . -T, T into one of finding a global solution of (6). With this in

- 1x, 1 + - . - 0 ,  tind, we turn to the question of solability of pardal
-differential equations.

,- a,, T I, i. P.RTIAL DIFFERENTIAL EQUATIONS
a + .. A + _f-,, ax. We shall solve the overdetermined system of inear par-

= 1,2..n - I, tial differential equations (6). For an introductory discus-
8T sion of this topic, we refer the reader to the book of Johnx"-(A, + g,)+- ' T (f, + ,Z) + -"

x axi) (28].
We introduce the parameter s and begin our construc-

+ -a +ug,)-T ,, (3) tion of a (3 solution T, of the system+d,(a~) .o nO(.l,...,) , -3

which we write as

(dT,, (ad'f, g)) -0. (6)(,dT,,S) - o, i =l,2,...,,- l, First we solve for all s e R the system
(dT,f) - L1 (T,) -7,. , i-1,2,. - l, - dx

(dr, f + ug) - Lg(T,) -. , _. (4) - - ("'f, g)

* Note that T,, T2 ,-- -,T are functions of x, x 2 ,. .,x, only with initial conditions x(0) = 0 to find the integral curve
and that T,_I is a function of x,. x2,. .,x, and i. of the vector field (ad-.f, g) through the origin in n

Now by our Leibnitz formula space. We remark that we could start with any vector field
that is linearly independent of g,[f, g], ... ,(cd'-f, g).(dT 2 , g) - (L,(dT1 ), g> Next we solve for all t, e R the system•= Lf (dr,. g>- (dT,,[f, g]) d

= - -(dT,,ff, g]), dt, \adf,g)

(dT, g) - (LI(dT), g) with initial conditions x(s.O) -x(s). To solve the partial

- L,(dT, g)- (dT2 ,If. g]) differential equation (dT,.(ad"-f. g)) - 0 we must find a
=r l 0function T, so that dT/d t, - 0; thus. we have reduced to

O+(dT.[f,[f, g]]) a system of ordinary differential equations. We then ex-

- (dTi,(adf, g)) amine for all r. e R the system

and dx (ad"- 3, g)

(dT,. )- (L(dT._,). g) 1(-1)' (dT,.( -f, )). dt,

with initial conditions xts. t .O0) - x(s. ti). Tc sov
* Thus if we know T, then T,. T3, . • . T,. - can be found by , w', T1- ad in tia - ho t he xs ,. a 7f. ," - . • TT,.(ad'- 0 / , we show the existence cf a 7", 'A '

Lie differentiation. This fact is also pointed out in 27]. but aT. /,, = 0.
no conditions for the existence of T, are given there. Thus We repeat this argument, with the last ste. 'eing to
(4) becomes consider for all t,_ the system

,dT,.(ad'f.g)) -0. k 0.1. . -2 ax

* 'with (adaf. g)- ._, g

IdT. f + ug) - T. (5 hain initial conditions x(s, t,....."... O)x(s. I,.

7--...
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l..,. For dT,, g) -0 we need a function T, with neizhborhood of :he on:1 on which 'ie ..,z " ::.':.
/. ible.

For ou;r solution we choose T, s (actually any C.1 Thus conditlons for showing the: ex~isten. cf.~ j&Oba
functior of s which "anishes at (0. O,. .0) and with transformation T - (T,. 7,,. ., *- 1) can. be i-nte.'pre:ed in
nonvanishing derivative will work). Since the se. terms of the mat,-x (7).
(.4f, .],- f, g') is.nvolutive. for each (cxed £ the Before moving on to global cons'dera-ions. we exar:.ne
:', "";__ map the Jacobian matrix of (T,. T., .,) w. respect to
F- ( 1(ss,)S, t,- " t-Equations (6) imply that

x(s,t1,... )- aT, OT,
defines an inteman manjfold of this involutive set. Hence
T, -s does solve the desired equations as a function of are all zero. Applying the Leib=tz formula once to (6) we
s. t,..t _ -since it is constant on every such integral find
manifold and (dTa, (adaf, g)) - 0. i- 0, l,. - 3

a 7T, aT, aT, (d7(ad 4fg)) - 0.
at, a12 atoThus, 

we have

The importat question to answer is when can the map F art dT, a T~be inverted in the sense that. we solve for s, tl,... , to- , as at, 'at-", S
... . functions of x , xj, --. x,?. Before addressing this problem,
-.- we show that Lhe last equatioa in (6) must vanish. Simnilarly,

i~l.(d7* (ado--- ,f S-))> 0 (dT*,('d f g)> 10, k 10,1, -. -4I

is solved. (,,(ad -f. g)) -0
Computing, we have imply

ax, aT, . T, at, at.-
d T, d 1s x 2 .T .+ z -s

3T, as T d X  +  Continuing in this manner, we find that the Jacobian
ax ax as axi2 mti f7,T ,T.tamatrix of "1, ",-, "with respect to s, t ,- • t_ has all
aT, as dentries above the diagonal zero.

+ ~ dx.

M aTj ds IV. GLOBAL TP.ANsFo mAT, ob, Ra.i.
as We give sufficient conditions for a global transformation

If (2dTj.(ad*'.,g))-0 since d7, and (ad'If,g) are (of the type of interest to us) to exist from a nonlinearboth nonzero, we have that (ad*'-f, S) must be tangent to system to a linear system.
an integral manifold of (g,[f, g],.- ,(ad*-2f, g)), con- Our theory depends on the Jacobian matrix (7) of the
tradicting the fact that the controllability matrix has rank map F that we constructed in the last section. We refer to
n. this matrix as the noncharaczeristic matrix because of its

Hence. our problem is solved once we know that we can application in partial differential equations. Note that this
find s,t,., to_. as functions of x ,x,,...,x.. This de- matrix does not depend on the T, map, but only on
pends on the Jacobian matrix of F the functions x(s, t,...,t,,.), x(S. t , ),"'- "" : x ,X.(S, t1 . . : _ )

ax, x1  ax The first result we need can be found in [16].
. . ... Theorem 4.1: Suppose that -here is a map H: q' -R'as a which is differentiable with Jacobian -natrix *.(x). If there• .'.(7) exists a constant c > 0 such that the absolute values of the

.. x4  ax ax. leading principal minors A,, a:.. .... of 1(x) satisfy

being nonsingular (this is called the noncharacteristic con-
dition in partial differential equations). By design. this for all x Cc R",-,.hen H is one-to-one from R' onto R.
matrix is the controllability matrix along the integral curve The condition stated on the absolute "alues of ead nz
of (ado f. g) throuph the orizin. Hence. there is an .pen ormciail r q ; il. ,q . . ..

% 4..
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Theorem 4.2:. Assume that the controllability matrix of (T, T,) is nonsingular eve-'where. (T,. 7) is on.:-tc-one
of system (1) is nonsingular on R", the set on R2 , and T-(T,T,.T 3) is one-t-one on J.
(g.[f.g]...(ad =f.g)) is involutive on R'. and the Since T, =s, we have
noncharacteristic matrix satisfies the ratio condition on R". _ _as T
Then there exists a (** transformation T-(TI.T....., ,- j(2s)-- t e Is -.

, ) with the following properties. 9s ax
1) T(O) = 0; - (2s 2 + e' - 1+ t).
2) T1. T.... , T are functions of x11 x21... ,X only and

the n x n Jacobian matrix is nonsingular at each point of The Jacobian matrix of (T,, 7,) with respect to (s. t) is
3 "; T., isafunctionof(x,x 2 ,...,x,,u) whichcanbe [ 1 0+]

inverted as a function of u and where (x,, x,,..,x.) R'; L -2s - (e' 1 )
4) T maps the system (1) to the system (2); which satisfies the ratio condition on R2 with c-1/2.

* 5) the map (7. T2 .. -, ,7) is one-to-one on R" and T is Thus, the map is also onto R.Thusthe-mpnis lso oto R
one-to-one on A+. In Theorem 4. 1, the same conclusion holds if the ratio

Proof: By Theorem 4.1, the map F whose Jacobian condition on J(x) is replaced by the ratio condition on
matrix is the noncharacteristic matrix is one-to-one from AJ(x) for some nonsingular constant a x n matrix A (seeR" onto R". Thus. we can globally solve for s, t, t f [n6t).

as functions of x,,x,-**- ,~ and by the construction of (6)
T - (T,. ions , Ta.,-- in the contruettrnso Corollary 4.1: Suppose that there exists an n X n nonsin-
fT (T,,., T,, j) in the preceding section, the trans- gular constant matrix A such that A multiplied on the rightformation trollabili) s on a h mp Rby the noncharacteristic matrix satisfies the ratio conditionover, since the controllability matrix has rank n, the mapon ". If the controllabity matrix Of System (1) is nonsin-
(T",,*....7T) is nonsingular on R' as mentioned previ- gular on R' and if the set (g,[f, g],...(ad"-f. g)) is
ously. Properties 1), 3), and 4) follow by the design of T. .olv o , t t c u o There .2

We know that the transformation (TIT 2,. T',) has a hol. R

nonsingular Jacobian matrix with respect to s, t, - ' Given a nonlinear system (1), it is often possible to
and that all enties above the diagonal are zero by corn- determine that there is not a global transformation T with
ments in Section 111. By construction we also have T, - s, T2 (T T. T.) mapping R'in a one-to-one manner withoutis a function of s and t, only with aTa t, 0 in R*,-.-, 1. 2 .. ..i f t o a. nw. n .. , going through the process of showing that one cannot be

, isa function of s, ,,.,- .. only with a:...t/".- 2 constructed. Remembering that T,, is the control in (2),
on- I - 0 _ we wite tat linear system as

This implies that (T, T2 , . .-,T.) is one-to-one on A ". The w
fact that T-(T,, T,.. 1,.,) is one-to-one on R"" fol-
lows from (-|)"/'(dT,,(ad"fg)>u+d,,f)-7,. , 0
[see (5) and (6)]. " 3 0

Example 4.1.: Consider the nonlinear system on R2: + [ .,t (8)

. +U~x~j[1. KI;~ 1;TV 8
- ... ) . where the definitions of f, v, and B are obvious.

f (x('))+ u(t)g(x(t)). Lemma 4.1: Under a transformation T the set of points
Computing. we find where f and g are linearly dependent must map by

(TI, T2 ,---, T.) to the set of points where AT and B are
fIg ] [-(e2 + I)] linearly dependent.

g) 0 Proof: The set of points where AT and B are linearly
40. . . .. d ep en d en t is d efin ed by T " - 0 T = - - If x i a

which is linearly independent of g on RA We first sove pint i di sc T 2 3 0. T - 0. If x Is a
We firs so-"lv.. .poit in R such that f(x) - cg(x) for some constant c,dx,/ds - -(e,: + 1) Aith x,(0) - 0 and dx2Ids - 0 with then from (4) we have

x2(0) -0 to obtain x, - 2s and x2 - 0. Next, we solve
dx,/dtinO with x,(s.O)-2s and dx,/dt-I with (dT,.g)=0, i-l.2.-.. -1
x.(s.O) 0 to obtain x, - -2s and x. -r.

S"The function T, - s certainly satisfies (6) as a function of which implies that (dT,,cg)(x) - 0 or (dT. f,(x) = 0.
s and 1. The noncharactenstic matrix is Then (dT,) - -1,2,... - I, giving us T. - 0

[2 .0] 7 ) -. 0a 'QED
1-0 T'ne proof of this lemma actuallyv shows the invariance of

the linearly dependent sets under the kind of tr-ansforna-
which fulfills the ratio condizion with c 1/2. Hence our tions we consider. In [19]. [201. and f(21) the importance of

* transformation is defined on all of R. the Jacobian matrix these sets in controllability is denmobstrated. Gi%.en a point
161

, .,.- ".'.., ..,-. ,. , . -. .., . .,..: ...'.. 7... ....,- . . ... .. . .-.. ..7. .. .
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in the hncar!y dependent set of , u.. feedback can This example suggests the fc¢lowinz co'H!I .. to Theo-
be used to take this point to an equilibnum point, rem 4.2 (and Corollary 4.1). the proof of whjh f, 5s that

Lernna, 4.1 can be applied to show the impossibility of of the theorem. Let U be an open set in :on:ai..ng -he
having a %;obal one-to-one transformation in certain cases. origvn and / and g b. F~ on "

Example 4.2: We take the nonlinear svstem Corollary 0.2: Assume that the conroilabi-it. marix
" of system (1) is nonsingular on U. ,he set
i X.X [ . .. g)) is nlutive on U. an the non-

'- (. 0 characteristic matrix (or the norcharactenstic matrix ith
-f(x(t))+u()g(x(t)) a premuluplication by an n X n nonsingular constant ma-

trix A) satisfies the ratio conditor on R'. Then there exists
on R", Usng the techniques of (231. it can be shown that a e** transformation T- (T., T,-- -, T..-,) with the prop-

•-this is a controllable nonlinear system on R 2. Is there a erties I)-5) of Thorem 4.2 holding where R* is replaced
global transformation T- (T 1. T:, T) with a nonsingular by U.

•. Jacooian matrix and with (TI, T,) mapping R' in a one-to-
one fashion so that

V. OrHER TR . sFoR ATION RESUJLTS

Suppose that 'and g in (1) are on R'. The proof of
- Theorem 4.1 in (16] applies to any n-dimensional open

. The set of points where f and g are linearly dependent (possibly unbounded) rectangle R in (x,. x... ,x.) space
consists of the two straight lines, x2 - 0 and x2 - 1. In the with sides parallel to one of x, - 0, x: - 0.- .. X, - 0 and
linear system the vector fields containing the origin [in tis case we have H is one-to-one

onto the image )f(R)J. If U is an open subset of Ra
[T21 and [01 containing the origin and Uc F-'(R) (the inverse image
OJ II of R under tbe map F whose Jacobian it the noncharacter.

are linearly dependent if and only if T - 0. There ii istic matrix) and if the noncharacteristic matrix, with a

.4. certainly no one-to-one map taking two straight lines to possible nonsingular premultipUication. satisfies the condi-tion on A, then a result similar to Corollary 4.2 cant be
one Hence, this system is not globally transformable in a onalr

~ proved.
Itiso ossble to cosrcWe are interested in assumptions other than the ratio

condition which can be applied to the noncharacteristicborhood of the origin. The solution to matrix. The following result is found in [161.

d% 2x -1I Theorem S.1: Suppose that there is a map H: R' -. Ro 0 .]which is defined on an open convex subset E of R.

a) If H is differentiable with Jacobian matrix 1(x), and
with x,(0) 0 and x2(0) 0 is x, s and x2 0. SolvIn$ if there exists a constant n X n nonsingular matrix A so

dX rl that .41(x) is positive-definite for all x G P. then H is
"" 0 $-[Oil" one-to-one from 0 onto H(Q).

b) If H is continuously differentiable with Jacobian
with x,(s.0) - - s and x.(s.O) -0, we have x, - - s and matrix J(x), if I is bounded, and if there exists a constant

% x 2 - t. The noncharacteristic matrix is n x n nonsingular matrix A so that det AJ(x) > 0 for all
x G60 and AJ(x) +(AJ(x))* hax nonnegative principa

- -' 'minors for all x 6 Q, then H is one-to-one from C onto
.- 0 1 H(.n).

and this satisfies the ratio condition on R'. Thus. our map In our application of this theorem we assume that 2
(x,(r, t) x:(s. t)) is a one-to-one transformation of R2 contains an open neighborhood of the origin in (s. t,.-- ..
onto R. a,,_,) space. The proof of our rext result is obvious from

The controllability matrix previous considerations.
. "Theorem 5.2: Let U be an open set in 2" contain~ng the,':: [0 1x-i[0 1 2) x 2 -onzin and with U C " '(0). Suppose that the controllabi-

-1 0 ity matrix of system (1) is ronsingular on U. :me set

has rank 2 on ((x, x:)X: x. < /2) From [5]. we know that 1g.[f, gJ....(ad":, g)) is involutive on L. and the non-
a transformation exists in a neighborhood of the orizin in characteristic matrix satisfies a) or b) in Theorem . .1T h-n
(XI, X:) space. Setting T, - s. r, sand A. t. we have there exists a transformation satisfying the follou.. con-
the transformation T x,. T. - -x: + x,. and T - (1 clusions.
-2g:iu. which exists on the set ((xI.x:)-x:<l/2). 1) T(O)-O:
Moreover. the Jacobian matrix of (T, T.) is nonsingular on ) T. T:. . are functions of x. x... - .x oniv and
theis set and (7,. rth is one-to-one there. x n acobian matrix is nonsingular on U:

lb . . . . . . ' ." . . o " ,' . .. . . . . . . * . . , ., , " - . - - * . - , . - . . • " . •4 .. . •
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3) 7".- is- a function of x1 , x. .,x,, u w.tch can be [5) R. Su. "On the linear equialcnLs of noin=r systems,•" Sy:.
Conir. Lert.. vol. 2. pp. 48-52. 1998_
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the following condition holds. Every integral curve of - which disconnects
D contains a point p where f and 'g are linearly dependent and the first
intecer i' such that C ad~g. f) and r &Me inearly indemedent at p is odd
Also assumed here ts that the vector space dimension of the Lie Zffbra

I generated by .1and successive Lie brackets is 2 at x0 in cite that 'we
know an open Subset of D is reachable from x0.

* Let L,, be the Lie algebra generated by f. gl.- -.g,-..I in 0l) and
successive Lie brackets, and suppose that the vector space dimencrsion of

* LA at x0 is n. Then an open subset of M is reachable from x0 by results in
191 and I IlI] and we denote by Ui the largest open subset in M which is

* reachable from x01 called the region of reachability from x0. In ( I 1 (6). [7),
* and JAIJ this set V (which is shown to be connected in 171) is characterized

in the following way, The boundary of U. 8U. consists of the (it-I)-
*dimensional integral manifolds of g'.** - . . (and hence of the Lie

algebra L; ) ta intec~t it. Moreover, the integral curve off which starts
at a point in aU must remain in Ii, the closure of U in M.

Honce, if there are no integal manifolds of L in D or if every integral
manifold N of D separates D into two open disjont sets 01 and 02 with

- Conrols 01 U 02 U N = D and contains points where the vector field f is "in the
n -Dimensional Controllability with (n - ) Cotos directions of 0,," and other points where the vector field f is ",n the

* LOUIS R. HUNT direction of 02." then D is controllable from any point x~,E 4) with the
vector space dimension of LA at x0 equal nt. The problem is to determine

A bstract- Lat M be a conected real-analytic n -dimensional maifold, this turning of the vector field f through the integral manifold I. This
fg1. -- .. - I be complete 1el-analylie vector fields on which we must occur at a point p of N where f and St .g are linearly

linearly independent at some point of M. and mi. - - , u.- be ro-amd dependent. i.e.. apoint pwhere fis in the tangent space to Nat p. Thus,
* th. ~ of~. ~we have a local question and we can apply the beautiful work of Hermes

13] to study the turning of f through N. The answers are obtained in terms
I of Lie braets at p. We are using unbounded controls in our theory. and

X(t) -f(x(t)) + V u,:)g(x0)). z(O) =X0 6 Al. locally this has the effect of applying "impulsive controls" in [3).
i = Sectio 11 of this paper contains definitions and known results. In

Section III we give examples and prove our main theorem.
Neceossary and sidliclen conditions are given so thait this s"tm is-
controllakile on any simply connected dolain D contained in M on whc 11. Daiim~

at.--..S e lnayindependent. These Conditions depend on the
comtputation of Lie brackets at tbote points wbere f. g,.- -,g.-. I w We are concerrned with the controllability of the system given in (1).

* linhearly depmndenit. If hl and hA2 are CI vector fields on Al. we define the lie bracket of h,
and h2 by

Consider the stistemn ax1O T0 h h

55iwhere 8h 8x and ah2 lax are Jacoibiain matrices. For our purpose. we
* ~ )(()-~ u,(t)g,(X(f)). X(O) = XoeM (1) could have taken Ih 1.h Ito bethe negative ofthe aboveexpressaionau

'1 well. Of course it is possihle to define higher order Lie brackets
* where M is a connected real-analytic n-dimensional pracoanpaCt Mani. [1h1 .lh2 I). [h2jh,,h 2 I1 '''. We Set (mdht-h2)"Ih~h21 and indUC-

fo'ld. and f. S .* - .S arc complete real-analytic vector field-, on Ml. lively (oa '1h 1.h2) h .(adhI.h 2). Let LA and L , be the Lie alge-
u.thch are line~arly independent at some point in Al. Let D be a simply bras generated by I.g. .~- and successive Lie brackets and

conneced domain in Ul on which ge.. .g.- I are linearly independent. 91 " and successive Lie brackets. respeetivcly. whcref. g,.*
We are interested in establishing necessary and sufficient conditions that are defined in (1). For xE Al. we set L,(x)=(h(x): h4ELA) and

Otthe system (1)be controlable on D. Theseeconditions involve the compu- LS.'i= (h(x): h E L4. The set of vector fields ui...-~ is called
tation of the Lie brackets of I ... at those points where *iviolutie at x if there exist functions y,, such that
I.S1.g:.- ._ are linearly dependent and where the vector space
dimenstion of the Lie algebra L generated by,g 2..g5.. and sucees. ~ Jx Y,(X)gi(X) for all ij. I <i. j I.n - 1. 1~j
sivc Lie brackets is (ir - 1). k-=

In the special case a = 2. necessary and sufficient conditions for control-
lahilit% ame gi vcn in I[101 for the system If this holds for all x E M., then g,. -*.g,.- I are involuritweon M.

By T( M) we denote the tangent bundle to M with fiber T,( Al) for
()=!(x('))+ U(f)g(X(r)). X(0) =xoE Af. (2) x e Mr. the tangcnt spaeto Al at x. If X is a ? vector field on M., then a

is an integral curve of X if a is a C' mapping fromi an interval I C % into
Let .,jdr. 'fr.f] the Lie bracket of f and g. (ad22.j[Rf iLl Icic U1 such that da(r)/dr X(&t:)) for all 16 l. For Sa subset of T( Af). an
'5e. the vstem (2) -is controllable on D from any point x0iE D. where D integral curve of S is a mapping a from a rcal interval I. t'jinto Mf so that

ia sirnpl% connected doniain in M on which gis nonzero if and only if teeeitg=t 1 < 2 <.. =Cadvco ilsX, ~i
wi th the restriction of a to [ tt, Ir being an integral curve of X, for each

'laiuscript received June :7 910. rited Mav 12. 19P1. Prer recommended t". M. i= 1. 2, A. A connected submani fold V of Al is an integral manifoldof
W Vid ' taapr. Pat Ouairman of the Stahiliiv. Noninear, and isainhured Sysems Commit-byfrec

lee This %o~rb wm supsported it% the Naiornal Scnce Founkdationt under Grant M.4(S 1.- - .g- if T (X) is the space %panned by .* St,..., at)yfrec
1A.O!:VAoI and by the Joint Services Electronics Pirntrant under ONR Contract 6C N.

.he author ii, wah the Ditrsnfti of Mathenmais. Teilm Tech Uiterimit% Luhtisck, The subset S of Al we consider is the one given b) the .cctor fields in
T-< our system (1) A point x E Alf is reachable from xoC- Al if there is an
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integral curve aolf S and somne time T -O in the interval for a such that-
* otiO)l v,. and msT) -X. A subset A of Vl is re-hale firapp xr, if LveV P ! y

r F .4 1 rcauhable from % . In the Cabe A - Ait. the system is vmtroilah~e
fw;x, If he system is. controllable (fom every x, in V. then it is ,i)/ )(s.-~. d 1 f)

*We arply thecabove definitionsto oursimplyconnctcd dortain D in Al1 ,() ~ (S,)
on wijch z,. arc linearly independent. In fact. s-ncc our main s

r-.%ult.% are giucd for D. we may as well assume that Ml - D. Only in the
txeaniole% foliting Theorem 3.1 in Section III will we consider casm where ix,. s.- 1) is any point in a neighborhood if the origin in 9-'.
'-here D . properly contained in M. T he following theorem can be deduced from the results in 13 1.

Letting a be a pooint in D. we need to ewmlnne the possibihity of having Theorem 2.3. Consider the system (1) wthA P)O= and with the vector
an inwglral manifold Nof 81. .-. &- throug y.The real-an tic version space dimension of L.4p) equal (n-I). and et N be the integral
of the famous Frobenius theorem statin if gI.- .g are invluivL atY manifold of gi.:* - 8, 1(and hence L ) through p. Assume that there
(or equivalently the vector spece dimnrsilon of L (y) is ( 1- )). then exists an integer r *%4 such that 6,(s)U 40 or s in some neighaborhood of
dher is a unique real-nalytic J n - I).iaialintegral manifold Nv of the oan in V ~ and let , be the smallest inee ihti rpry.

.1,,-I through y- If there is.pint y'6N 0 D. then the vector )If 0ismy open*neighborhood of pin D. et Nrdisconnect 0Ointo
fieds,, :.. are inolutive at a' by continuity and r'VN n D, Thus. two disjoi: open art 01 and 02. ir #,4s) changes sip in every
an (n - I)-dimensionalintegral manifold ofg. 1.- in b cam have no nqighkaorhood of the origin in IR'. then there asit y,.AyN n0. such
boundary points in D. Of course. if the vector spaw dimension of L (y) that f points toward 0, at Y,' and toward 0. at h .
is n. then there is no integral manifold! of Ig,.- ..-.. of dimension 2) 110 it any open neighborhood of p in D. let N. 0,. and 02 be as
(a-I1) through r. and an open neighborhood 0 of )- in Dais readhable abcv Then, if 0,.(s) is semidlnite.-I,.S changing sign in every

P- from any point in 0 by chow-s theorem (see (I II nei~ghborbood of the origin in W- I is a necessary and sufficient condition
4. - We emphabize that we are not assuming that the vector space dimen- that there existy1  G N n 0. such that f points toward 01 at y, and

S j sion ofl a s acoewinton D. Itcon vam as &amove iiroih D. but toward Ozza'.2
must alIay he either (nt - 1) or it. Points wthere this dimension is (or - 1) The task is to merge Theorems 2.1. 2.2. and 2.3 to give necessarty and
are interior points of integral manifolds of Se.- .,.._,. we say that an sufficient conditions (or our system to be controllable on 0.
Integral manifold N of -St. - -. , 1. discmnwa D if there are disjoint.
nonempty open sets 0, and 01 eomplament in D of (0, V',V) with 111. RzsuLts Ao Ex4a
0, U.0.:UN=D L.. N separates D into disjoint. nonempty open sets 01
and 01). In %new of the preceding paragraph and the fact that D is simply We first prove the main theorem and then give a number of ilusrative
connected, the following assumtion is reasonable. For the remainder of exmpls Racall that we are assuming 81.~ - *.g.-. arme linearly indepen-
this papr. %v assim tha evr inega maifl of,. - ..- , in den' o #- a ( ri)-dftn6iona integral manifolds of 81...s-

P., disconects 0.disonc 0. andl AI,.-. Ig.. we linearly independent at some point
Let V ben open subset of D and take x eaV. Thena Jpower wn the o

dirwrnfY( or w rd )a z itthere san open neighbohod W ofx It tht vecor spaw dimiensiond ofV is x mevery point ofD. then the

in . uchtht he ntgra crv of sartngatx and Intersected wth W systmi costrollabl oriDby Theore 2. (see 14). [I0M) If the vector

-. O P avWe efie fp~ivmgan ke ~Petlmof ~ , p anid by Nasanos terem there is a (a - 1)-dimensional inegral manifold
evmtr With V. - off. s,.- . -..- I. through this point aftich disconnects D. It is inz~issible

Our first two reults are proved in fii to move from one side of this manifold in D to the other, so dais sstem is
rheorei, 2.1: Assumne tha the vector spac dimaion of LAat xo6 not controllable by the comment after Theorem.2.L1.

is P.Let E; e the largest open subset of Dwhich iseadbabkefrom z. Thus. we assume tha the dimension of Lis aat every point of Dand
Thee aU consists of integral manifolds of S1. - ...- .ad, points in th the dimension of L is (a -i) at some point in D (i.e.. we have at least

direcionofonW.one integral manifold of L (of S,.- *.S*.-, in D). Suppose that
11 there is an integrall manifold N of si. diks ometin D into f- 9" - ar- e limearl) ideptendent at every point of N. Then we have

0,Zan 01 with f Pointin toward 0, for Z;) on N. the th Ml is an integral manifold disconnecting D into two disjoint open sets 01 and
Vcertainly. not controllable on D by resuilts in 16). 02 swich that! fpoints in the direction of one of the sets say 0,. on N. and

Let A4 denote Hausdorff measure (se .121) in dirmnion d on D. the systemn is no controllable by the commnt after Theorem 2. 1.
Suppose /. is the set of points on which the Lie algebra L has dimension Haene we additionally assumer that every integral manifold A' of

*(a- 1). Then any integral manifold XNof St. - - I. is contained in L. 81' g- I inD ons a C~ m&Point P su eref *,*.*.-I*-,Iawe linearly
and fer such a manIfdold we must have A" I(L) >. dependent. Suppose that cl -. c.- ame constants such that

Themvm 1.2: If A" 11 L) -0 then our system (1) is controllable fromfp)c,() .

any x*G A0.,)
Next we turn to the results of Hermes [31 concerning local controfiahil- If u, relae IIbyM - et. 2i it, Ia u. by u.- I - c.- in

ihy along a reference solution. Let p be a point in D where f(p)0. f system (1). theni we have a new "equsvalent" system
beinig a*. in our system (1). That as. p is a critical pOnt or rest solution
when all controls are zero. Suppose that the vect or space dimension of

Lp is 1"-). We note that gi.' g.- I do not have to be linearly () f(,,w t ..

independent in 11,'. but we assume they are for now-and discuss how this r-

4bustumption can be removed for our entire theory later in this paper. We ~u(),x:) 3
%.. also remark that the results in [31 are stronger th~an indicated herem-

Let <*. denote the inner product of tangent vectors induced by a
Riemannwan metric on D. By At we denote a vector field on D so that This new system has the property that p is a critical point for the drift
81. - ..S-'. hAre limerly indeptendcrnt at p. Let Ibe the unique vector term tie., when ul. - . . are all 0). Moreover. Theorem Z.3 is app:!ica.
such awlt ble to svstern (3). Since

Set P -(P1~. . ~ a nonn'tegave integer Cf~, ,g,.g- I. C, Sj., -g.
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* And ~,ui s in the tingcn: bundle to V.g,. . beirg inflluiv. - =~0. i.e. at the onvn. The integral ra.!olds of ;~ and g:
t Lic brakets 1,f.gLj and [f-(cSlg,. ". ¢..... c-_ ;cI,* - dif- arc the hvpcrplanc% x, =constant. Thus. :here arc ir.tczre-ai rnJof. at
ter by vector ficlJls in the tangent bundle to V. This is aLso true for all g, and s: %hich do not cantain a point whcref. :,. and g: are dependent.
succe.,ive Lie brackets of interest to us. We can de!lne the functions 0., By pan 5) of Theorem 3.1. this system is not control!ablc on
and o.. associated with Theorem 2.3 for our sYstem (I) whcrc f is tangent Example 3..: We take M = D and
to N, a,' p. Sinie we are interested in the direction cf / on N near p. the
infurmation ;ivn to us by Theorm 1.3 applied to system (3) is the same [ZI x i ..+1 olr3
U that given by direct calculations from s)sacm (1) In fact. the numbers =U( 0

.#(.-) gen by system (1) and system (3) agre for all because the inner
product of 1(p) with any tangent vector to N at p is O.

Thus. we have proved the following theorem in which 0, and ,. are as =(x(')) U,(1)g,(x(r)) + &0(r V,(X(,')).
in Theorem 2.3.

Theorem J.1: The system (I) is controllable ifany one of the following The vector fields [, go. and g are linearly dependent -hen xj -2.- z 0.

conditions is satisfi Le.. on the x-axis. The integral manifolds of 11 and J: are the hyper.

0I) The vector space dimension of L. is a at every point of D. planes z, =constant. and each of these intersects the x,a.-is when x x,

2) gvery integral manifold N of g.-.- -. g,- in D contains a point P -0. Computing Lie brackets we find

where 1. So, .- are linearly dependent 'and 0,4s) changes sign in x2x
eeyneighborhood of the origin in 'I.". (I.,] [0,Ji3) ve inegra h mfhold A ' ofg.. ,g._, in Dcontainsa point p 01] • [ ,

where f.g,."- are linearly dependenL k4s) is semidefifite on
some neihborhodofe origin in % "and .,(s) changesinin 0 0
every neighborhood ofteongin '- '. the • in,]g] %-.

The system (I) is not controllable if any one of the following conditions

'-s satisfied.
4) The vector space dimension of L. is (n-) at, some point of D. [.0.,.
5) There is an integral manifold N of Sr.'".S.-I on which

l f. So. - ...- are linearly independent.ri
6) There is an integral manifold N of g,...-,I.-I so that for eve t when x. = x3 -0. Thus. with

* point p- 6N at which f, go. ",g-t are linearly dependent there is an Notethatbothf.g 1)and f.is1ame 1 1
open neighborhood of the origin in S'-' on which (s) is scmidefiniie [l

and !?O,(s) does not change sign. I( p ): 1 and r: -2 in our formulas for ,
Throughout this paper we have assumed that ,.. ..- are l0nearly0

independent on D. Sin Theorem 2.1 (see [7J) and Theorem 2.3 are valid
if we replace this assumption by the hypothesis that the vector space ,.(s)-!(-se-s:) 2+2" (-s2):2
dimension of L;, on D is ( I). Thore; . again holds.

* ,We present a series of examples which demonstrate the application of which is positive definite in a neighborhood of (0.0) n '33. By part 6) of
Th4omrn 3.1 to a variety of systems. Examples for dimension 2 am given Theorem 3.1 this sy.tem is not controllable. since
in (5"

£xampe J.1: e take M = and

I[, I Ill Fo]
= .,)) () "1 +,,:(0). Example 3.4. Let M D=R' and

= f(x())+ u,(:)h(x(r)+ u:()Sz(z())
where/is any real-analytic vector field on V. Since 12. 1; X, X'

•r" ] "(0()) + "( )((X(O) + V A') &:(-( M)"

- 3xTetor0  ,  n aod S2 are linearly dependent when xl: x2 * x3
3xl~z3-0.andSoand S2 ame linearly dependent when zx: X1.

and There is a point. e.t.. x I0, x 2 - -x ' 0. where f. gr1. and S: are
dependent hut g and 31 are independent. Let D be any simply connected

s - 1  domain in V containing this point and not intersecting the linex, = x,=
Iz , .2 0J x). Since

are lincarly independent on %;, the voctor space dimension of L, on %3 is [.u O 0 0
"-. and pt I)of Theorem 3.1 impli s that this system is controllable on

1. Note that" part I) of Theorem 3.1 certainly does not require that St
and 1, be linearly independent on . and

aemple .: Let M - D w q3 and

.t• the dimension of LO at any point of D is determined by the span off. ,.
m/(z(,)).i. u,(O)g(x +"))W u(t)g:(get)), and g at this point. Hence. there is a point in D where the dimension of

L, is l and our system is not controllable by part 4) of Theorem 3 I.
The vector fields f. , and S: are linearly dependent if and only if E.xampe J..: We ta.ke A4s D 'i ' and
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• -/(z( )) V,)( x()) - = :.•We -ind tOat

Thes thre vector fields an lineart' dependCe.nt.f and oniv if . - x =0
of X: u = x3. ComputinS Lie br akets we ind L =te LJr. gs

0OJ LOJ
I'ssl- 0s ' ad IiLfI Lciting

0[ 0
Sow UK111611eAntepal Oaf dof and S: an svmnby z, mconsantan y and 'F"ea, 7h12 the lines z% z when z, is held fixed. If w let 0

0(=Ixs we
31a @,n havae

..'. .l'.t;~~~ 2 2 12 an~ig . i l d x 3 m - I. anod r O i w - l w e hav e

. ,s)(-~)(s,)'()(_,~lz)'(2) S,(2S)5(- :)(- T z2 ) and x: qO in D,.

and Theorem 3.1. pan 2) Siva us global cotrollability. By Theorem 3.1. pan 21. .ur wlsem is cnrtaulble on C,.
- E"N9 JA Is our Prereding eILanipIC. first-order Lie bracets omi Silar arguinenas show tat the System is ntrolabi on D.. 03. a

- applied to imply ControIabilty Hee we use thir-order brackets, D. Howver. we cmn m -oe frot DI WX. fom D: to D;. froc D; toD
' Ta te- tD 5V .Iand ad from D, to D, by using the vector fd. Thus. the s se rs J .ua

• "" controllable on M .- 9- (zla xis). Note that %he vector $pace dimerna-
A-IZ~ ~~r v O of L,~ is I on the x3-aitis.

' *. -/I , /+N() V (,)w In our last eaimple we -Ite able to apply our e on .. ,D. .

,(z(,)) + ,,)S( ,(()) ,show th stm 'in ctr flable an M= - (zu-axi. We remr
. - (z.iaxis) consists of he disoint union of two intel maol

We know that f. St. and s me neady dependen only on the x, axis and It and 82. n ither of which dionew Al or inte t the lne z I

f thl plne z1 - - z3.Iey iIt manifold of1 aed g2 instss the x, i2z. Ile sme is me for ead of i.. ID. aNd jO.. Ti llustra

tAxis. COPutiaq whenJ:2 = i0 we fd that the only Lie brackets of " Our iO°€ Ogeoy the ith other techniques can yie global sol

the first three orders ta amnonam we We now give anample in which the contrl ve= is a"m 40111=1

Lwm.piIk.aI~ ande e t '-siI . A

Letting ( O 3 we have

.Set , 1.fail + 4 -u in(,(,))-+,u,),(z(,)). -

) 0 IJ ' Set D* -((,xiz 2 )R': z,>o ad D- =((x,.x:)6R: z,<0). Ovi.
" / ouslY. w an move from 0- to D- or D- to D- using the vetoId

Thus. we prove that the sys.tcm iis controllable oa D'. a siuilar argumew
. being applied D- to v us onro l al ty go R.
"* which satisre condtion 2) in Theorem 3.l iand implies traity. m v fl / a a learly dependent , D* if ,and
;.; If we choose to wor tho em poin xhat vi - z3 vO. utd ever intelral aree o t such a pan. Computatiol

a -a-.i tl .s. fim-order Lie brackets will sfloa.
"WO 1; e L: A ,M -t-lds)ad (i.,I [ MA .

"' " +"1(') -4x" +"v(') 0

"~~~~~/(z(Q))+ *,,(,)g.(z(,))-l. u:(fg:(-(,)). [[.]l.]

No- g, an g2 are linearly indepxdent on M d f 1,. and g2 am
* dependent if and only ifs, a r. U2. If we let I(p) : 0 and P~* 3,we bav

Let 0~(z.2 s)M x,.:-0

DI a((X. X.261)AE~z > O).2 <x~x'x) H 2OadIO which saife condition :, orf- hearrnm 3.1 rfo. ever. x, >0. We have a
0,'. ((xi. zj. ,)E Cc4: x,. x. -O) controllable system.

I D ((,. j 2 . x3)E MJ: x, >0 aid .r. <0). In this paper-e have concerttramed on the problvi of contoiaao'lty for
.vr i..0 aiod fgsd3 n0,iiew system with (it - 1) controls on an o-d~meosioa lodAl ei

'r %zvey itnm mairo ofI IOd : in0, ttlrse th lie xI aI x problem %s io Provide a simular theory it .he tiumbcr of control vecnors is
and 00u , is foliated by such integral manifolds since less than (n - 1) using the results o., (1]. (7]. anoi (S].
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Sufficient Conditions for Controllability
LOUIS R. HUNT. MEMBER, IEEE

Absra'ct-The problem is to find sufficient conditions for the system Under the assumption that m = n - 1, M,f, g1 ".
are real-analytic on M, M is simply connected, and

(1) =(X (0)- U,(),(x(t)). x(0) =XoEM g,,"g.-, are linearly independent on M, necessary and

tobe co etee at is a connected Owe mand f sufficient conditions are proved in [4] for our system to beto 1. - . .ar c mplt (vciels on,€ M. a4nd 1 -- u mI riel-,/. controllable on M. These conditions depend on results

tid coa .U m=- 1......r.S._, enal-a iic Misysimpl found in [2] and [5]. It is assumed that the vector space
dmd g .-..- me iinea.l indepenWent on M. then necessary dimension of the Lie algebra L generated by g1,-- . - I

Znd sufficient condition ae known. For the cmas of our e' system with and succ.essive Lie brackets is greater than or equal to
general in.we nsme that the space spanned by the Lie algebra LA (n-I)

S generated by f. S. -.. , and successive Lie brackets has constant
,dimension p on M and the algebra L generated by. ---, With our G? manifold M and general m we suppose that
viccessive Lie braickets has constan dimension p'Gc p on M. If P' = p. the vector space dimension (i.e., the spanning dimension)
Chows Teorem implies comrollability for ap-diensionalsubmifoidof of L; at every point of M is the constant k. If k=n,
A conainaing x. If p'< p, sufficient conditions are fowd involving the Chow's Theorem implies controllability of the system on
compastion of certain Lie brc ts at points where the veor field' is M. If k < n, results from 16] and [71 mentioned previously
tangen to the ineqral manifolds of L. Here we assume hat eety' integal and a theorem due to Hermes [3] implying local controlla-

* maifoolofL contains such Fa. bility along a reference solution are combined to give

I. INTRODUCTION sufficient controllability conditions.
L ET Ml be a connected e n-dimensional paracompact If every integral manifold N of L' in M contains a point

L manifold, f, g,,. -,g., be complete C-' vector fields on x where f is tangent to N (included in this is the possibility
M, and u, - ,u,,, be unbounded (or unlimited) real-valued that f vanishes at x), then our system is controllable if the

.@ controls. We are interested in finding sufficient conditions following conditions hold for at least one such x in each N.
that the system There exist a basis h1,.h. Ak of L' near x and integers

, I-,-,,I1 such that the space spanned by
4 u,(t)g,(x(,)), x(0) =Xoe M {h,(x),..,hk(x),(ad, h,)(x),. .. ,(ad, hk)(x)...

(1) (ad"!, h 1)(x),. ,(ad"!, hk)(x))

be controllable. Let L., be the Lie algebra generated by f, has dimension n. The vector field f is defined in the

g1,- -, g. and successive Lie brackets, and suppose that the following manner. Let c,,... ,C be constants so that f-
vector space dimension (i.e., the space spanned by the c~h,- czh 2 -..... ckh vanishes at x and set

vector fields in LA) of LA on M is p. By Chow's Theorem
the set of points in M which are reachable from x0 are =f - I c,h,.
contained in a (? p-dimensional submanifold S of M t=

through the point xo.We could develop our controllability Also (ad!, h) [.1,h ], the Lie bracket of I and h, (ad2 !, h)
theory for this submanifold S, but to conserve notation we =(1,[, h]], etc. If g1,.. ,g,, are linearly independent and
assume that p = n and S = M. involutive on M, the above condition is replaced by the

Thus the supposition is made that the vector space space spanned by
dimension of L, on M is n at every point of M. Hence, (g,(x),...-gg(x),(adj, 91)(x),. (adj, g,,)(x)....

* given an arbitrary point x0 in M, there is an open subset of
M which is reachable from x0 by results from [8] and [101. (ad,!, g,)(x),... ,(ad'-f, g,)(x))
In [6) it is shown that this open set can be taken so that its is of dimension n. Of course this generalizes the known
closure contains x0 . A characterization of the-largest open cotollailiy matri crti fo raliea teinarn

!ubset of M which is reachable from x0, called the region controllability matrix criterion for linear time-invariant

of reachability from x0, is given in [1), [6], and [7). systems.

* 11. DEFINITIONS

Manuscript received February 9. 1981: revised July 7, 1981 and We are interested in the contr6llability properties of the
November 6. 1981. This work was supponed in pat by tihe Joint Services
Electronics Proram under ONR Contract N00014-76-Cl 136. system (1).

The author is with NASA Ames Research Center. MS 210.3. Moffett Let T(M) be the tangent bundle to M with fiber T(M)
Field. CA 94035. on leave from the Deparment of Mathematics. Texas
Tech University. Lubbock. TX 79409. for x e .4, the tangent space to M at x. For X a k'= vector
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field on M. a is an integra, curve of V if a is a ,' mapping system (I be locall. contrellable along q at time t > 0 ,s
from an interval IZR intc. A; such that da:) d: = X(a(: )) that there exist integers .-.. ,,,such thav 'he space
for all ti=_ I. If T' is a subset of 7( M i. an :ntegral .:urre of spanned by {g!x).- - ..g(,,). (adf. g (..). .. (adf.
T i, a mapping a from a real inter',al [i. t] into Al so that g,v( - ".(ad'f. S , 0 ). ..xd)-. g ),ix0 )}1 is of di-

,here exisi I < t. < < = t' and .'ector fields mension n.
X,. X, in T' with the rstricion of a' to [.. being If xc is a critical point (or eculi ,ium )oint for !. then
an i--terral curve cf X. o0i each 1= 1....j. A connected an open neighborhood o: .x, in A car. be reached b\

...- submanifold .V of M is an ntteg"al manlold of vector fields trajectories of the system (0) starting at xo.
X,..- X, if T,(N) is the .pace spanned by X,.--.,X at y Our next theorem was first proved in [6] and [T and
for each )' E N. improved by Bacciotu and Stefani [I]. We assume that the
The subset 7 of M we consider ts the one given by the vector space dimensions of L, and L.', are constant on M.

vector fields in our system (1). A point x6 M is eachable Theorem S.? Let U be the smallest open subset of M
from xr, M if there is an integral curve a' of r and some containing x, in its closure such that 8U contains the GO'

time t ; 0 in the intervai for a' such that a'(O) = x0 and k-dimensional integral manifolds of L that intersect it. Iff
S- a'(t) =x. A subset A of M is reachable from xe if ever points in the direction of U on aU, then

point xE- A is reachable f.om x 0. If an open subset of M is U C (region of reachability from x0) C interior of
reachable from x0. the largest such open set is called the U i tregion of reachability from x0 , to f
region of reachability from x0 . If the system is controllable Conversely, if U is the region of reachabiliy from xo, then
from every x 0 in M. then it is conrollable. Let p(t. x,) be 8U contains the k-dimensional integral manifolds of LA
the solution of (1) at time t with 4p(0. x0 ) = x0 -and which which intersect it, f points toward U on 8W., and U contains
corresponds to all controls u, being 0. The system (I) is xo in its closure.
locall- controllable along T at time t w 0 if all points in some Let N be any connected (n - 1)-dimensional manifold
n-dimensional neighborhood of ,rt, x 0 ) can be reached at (not necessarily differentiable) consisting of the union of
time t by solutions of (1) initiating from XO.  at. integral manifold N w-th cther integral manifolds of L

Let 0 be an open subset of M and take x 80. Then f near N. If every integral manifold N of L in M contains a
points in the direction of 0 (or toward 0) at x if there is an point x which has the following property, then the system
open neighborhood W of x in M so that the integral curve (1) is cointrollable by Theorem 3.2. There is an open
of f starting at x and intersected with W is contained in 0, neighborhood W of x in M with N separating W into
the closure of 0 in M. If this is true for all xG 80. then f disjoint nonempty open sets 0, and 02 (with ) being the
points in the direction of Oon 80. We definefpointing in common boundary of Oand 02 in W) so that f points
the direction of 0 by replacing 0 everywhere with 0. toward 0, at some x, I NflW and f points toward 02 at

If X and Y are 0' vector fields on M. we define the Lie some x2 e NflW. However, if f has a critical point at x, if
bracket of X and Y by there is a neighborhood W of x with N, 0,, and 0, as

aY aX above, and if f points toward 0, (or 0.) at all points of
[x, Y = - " Y  9VW. then the system is not locally controllable along q).

•. xIn our next theorem the vector field f is defined in the

where 8Y/8x and 8X,/8x are Jacobian matrices. Higher following way. If x is a critical point of f, then let .;= f. If
order Lie brackets such as [X,[X, Yfl, [Y,[X, Yfl,-. can x is a point where/ is nonzero and is tangent to the integral
be defined. We let (adX. Y) =X, Y] and inductively manifold N of LA through x, then for h,. ..,h. a basis for
(ad X, Y)[X.(adJX, Y)J. By LA and L, we denote the L near x, there exist constants c ,. c • so thatf - c,
respective Lie algebras generated by f,g,,. .,g, and c2 h2 ..... ckh, is 0 at x. We set
successive brackets and g,,-..g., and successive brackets
where f. gi. -- ,g. are deie n(1). The set of vector ! f ~ 1
fields g,, .,g,, is called involutive if there exist functions' " y, such that "

such that Theorem 3.3. Suppose every integral manifold N of L

in M contains a point x where.f is tangent to Y and there
k...... =x exist a basis h1,.. .h of L near x and integers 11,.,k

fa. -jm .such that the space spanned by:..-.for all i.jl<ij~m.i0,j.

III. MAIN RESULTS (adf.hl)(x).

To prove our controllability results we combine the local
controllability along a trajectory work of Hermes [.] with has dimension n. Then the system (1) is controllable.
the local to global theory found in [7]. The firs. theorem is Proof. We exarmne the system
due to Hermes.

Theorem 3.1. Let p(t. x 0 ) be a solution cf (1) corre-
sponding to all u, =0. A sufficient condition that the ,) ,
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HUNT: SUFFICIENT CONDITIONS FOR CONTROU.ABILITY

where the u, are unlimited controls. With ias defined state equation is
earlier the point xis a critical point for the system[ 1 (cos6)x3 +(sin6)x 4  [0 [0

Fro TheoremX 3. wenx (3) (-si
•.(t)-- x(t)) = u,(t)h,(x(t)). (3)" = nx 3 1 +uIs +)u2 0

From Theorem 3.1 we deduce that the system (3) is -0
locally controllable along the trajectory with all u, = 0. By f(x)+ U1g(x)+ u-g 2 (x)
the comment after that result, an open neighborhood of x R4"
in M is reachable from x. Given an open neighborhood W with M = t Now gr and g are involutive on and f is

* of x and a (n - 1)-dimensional manifold N separating W tangent to the integral manifolds of g1 andg 2 ifx 3 =x=0.
into open sets Ci and 02 as before, we must have that /Certainly every integral manifold N of g, and g2 contains

points toward O at some xE lr)W and toward O at such a point and 1= fat all such points.
Comptin bye arckt wen atdhasome x2G nW by a previous remark. Since f and! differ omputing Lie brackets we find that

by vector fields in the tangent bundle of LA' near x, the Cos a sn 0
same is true for f itself. From statements in the paragraph (adf, g.) = -s- O and (adf,g 2) = Cs0

* preceding this theorem, we have that our system (1) is 0V0
controllable on M.

Remark. Given any point x0 in M, the research of Thus g,, g., (adf, g,), and (adf, g2) are linearly indepen-
Sussmann and Jurdjtvic [10] and Krener [8] iniplies that dent when x 3 = x, = 0, and by Corollary 3.4 our system is
there is an open set in M which is reachable from x0 (a controllable.
local result). Hermes (3] shows that under the assumptions In the following example the control vectors are not

• of Theorem 3.1 for a critical point x0 of f, this open set is involutive and Theorem 3.3 must be applied.
actually an open neighborhood of x0 (again a local result). LetThe important ideas in Theorem 3.3 are it snl [ !

(a) that the points x wheref is tangent to the integral i snX4 ] 0 0
, *2 sin x. 0manifolds of Ld can be treated by Hermes' theory to yield

local controllability, and 3= X3 +uX 4 + U2
* (b) the local to global capabilities of Theorem 3.2 are X2 X 0

applied to prove a result on global controllability which L *5 x3J
depends on examining certain Lie brackets at only those 2

points wheref is tangent to the integral manifolds. =f(x(t))+ I UiOt)
In general, global theorems are difficult to prove, and ,=1

proceeding from the local to the global is quite a problem. where M = R 5.
* We have the following corollary to Theorem 3.3. Computing Lie brackets we find that

Corollary 3.4. Let g1,-- -,g., be involutive on M. Sup-0
pose every integral manifold N of g,,. -,g, in M contains 0 0

a point x where fis tangent to N and there exist integers 0 0

I... ,li, so that the space spanned by (gl(x),..g, (x),
(adf, gI X x). ",(adl, g,.,Xx), ",(ad',f, g x),"',,

• (ad'-,g,Xx)) has dimension n. Then the system (1) is
controllable, implying that the vector space dimension of L on M is 3.

As an application of our theory we present the following An appropriate basis for L, is
example suggested by Meyer [9].

The state space is four dimensional but 2 axis, so that
the state x = (y. y2 ) and both y, and , are two dimen- hi4 ] h2= 0 andh3= .

* sional with

Y1= x Y [2J - The vector field f is tangent to the integral manifolds of L
if and only if x4 and x5 are integer multiples of i-r. Cer-

The vectorY) is the position vector in two dimensions and tainly every integral manifold N of L contains infinitely
the velocity , is generated by y, through two-dimensional many such points.
rotation. given by the matrix We have

sin cos x4  0
cose 0 osX5-sine cosOJ [f.hJ=- 0 and [f.h,]=- 0

where the angle 8 is a function of the Euclidean distance 0 0
11II 1 from the origin in R2. The control u is 2 axis and the 0 0
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Since the computations with f and f yield the same results [81 A. I Krenef. -A generalizauon of Cnow's Theorem and the bang-
bang theorem to nonlinear control problems.' SIA M J Contr. voi.% for this example, we find that (ht(x),h:(x). h,(x ) ,  12. pp. 43-5. 1974,

(ad, h1 Xx).dad. h,)(x)) span a five-dimensional space [9] G ever and L. Cicolasu. "Application of nonlinear svtem in-
when x, and x are i multiples & Thus our system verses to automauc flight control desigp-.ystem concepts and flight

neinteger mevaluations." in .4GA RDograph on Theo.. and Applications of Opti-
is controllable. mal Control in Aerospace Systems. P. Kant. Ed.. 1980.

-- much more difficult problem is encountered if there [101 H. Sussmann and V Jurdjevic. -Control.abiliTN of nonlinear sv-
terns." J. Differential Equag,,n. vol. I:. pp. 95-a16. 1972.

" . exists an integral manifold N of L which does not contain
a point x where f is tangent to N.
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*CONTROL OF NONLINEAR TIME-VARYING SYSTEMS

L. R. Hunt* and Renjeng Sut

-Ames Research Center, NASA, Mail Stop 210-3,
Moffett Field, California 94035

Abstract We indicate the type of mappings of interest
to us. A V transformation

Consider the time-varying nonlinear system of T - (TI.T2.. ., Tn) maps an open set in
2 R n+m+i((x2,x2, xuz u,)sae

the form (t) - f(x,t) + ui(t)gi(x,t). with .... xn, ul,u 2 .... u1,t) space)
-g eig_ Rcontaining the origin in Rn*m onto an open set in

f. .. gm being V" vector fields on R + .  Rn+m(TT
We give necessary and sufficient conditions for this n' TnTn+1 - . Tn+) space)

system to be transformable to a rime-invariant con- containing the origin in Rn+m such that the
trollable linear system. In orde- to control the following properties hold:
nonlinear system, we map to the L ear system, choose
a desired control there, and returr. to the nonlinear i) T(O,t) = 0 for all c;
system by the inverse of the transformation.

ii) T.2.... Tn are functions of
I. Introduction x1,x2, 7 .. xn and t only and have a nonsingu-

lar Jacobian matrix in some open neighborhood of
Suppose we wish to control a nonlinear system the origin in Rn for each fixed t;

of the formofm iii) Tn+l Tn+2 ... , Tn m -are functions of
(t)- f(xt) E E ui(t)gj(xt) (1) x1,x2  . . xn, u 1 ,u a, . . . I UMt and for

i-2 fixed (xl,x 2 .. . . .. xn) near the origin, the
m x m Jacobian matrix of T n+I T n+2., .... Tn.f

where f, g1, . , gm are ff complete vector with respect to u1 ,u . . . ..  Un is nonsingular,
fields on inx R, f(O.t - 0 for all t, and again, for every t;
9192, .... are linearly independent. If we
can find a nonsingular one-to-one V transforms- iv) TTT2 , . .. , Tn  are the stare variables
tion that maps this nonlinear time-varying syster to and Tn+i Tn+2,  . ., m  are the controls for a
a controllable linear time-invariant system, then we linear time-invariant system in the appropriate
can use the control theory for the linear system to Brunovsky canonical form; and
control the nonlinear system. In this paper we con-
sider only the local case, where the transformation v) for each fixed t, T = (TIT, , Tn+,)
maps a neighborhood of the origin in Rn " to a is a one-to-one map of an open neighborhood of the
neighborhood of the origin in Rn'm for each t. origin in (x1,x., .... , xn,u U . . . . . . . . U ) space

onto an open neighborhood of the origin in
Since every controllable linear system has as (TIT 2, . . ., Tn, 

Tn~i Tn+. ...... Tn+) space.
invariants the Kronecker indices and with these a Here, u', . . ., u. and Tn m ,  .... Tn+ can
3runovsky [I] canonical form, in order to map a be as large as we wish.
nonlinear system to a controllable linear system we
assume that the linear system is in Brunovsky form. In other words, we want a local diffeomorphism
From this point of view we may take an arbitrary T (for fixed t) which maps system (I) to our linear
set of Kronecker indices I...C. , with system. Since our wirk will be in a neighborhood of

S': • • > c, and use the associated linear the origin, we find it unnecessary to name specific
system as our target. sets; we suppose that all assumptions, conditions,

and results hold in an open set in the appropriate
*Author Euclidean space that contains the origin. This
Texa AThoon leave from Department of athematics, theory can be combined with the global inverse-

Texas Tech University, Lubbock, TX 79409. Research function theorems as in (2] to produce global
supported by NASA Ames Research Center under the IPA results.
Program and the Joint Services Electronics Program

S at Texas Tech niversity under ONR Contract If our system (1) is autonomous, then the
N00014-76-C-1126. in resy

-Research supported by NASA Ames Research following result from [3 sives necessary and
Center and the National Research Council.- sufficient conditions to map to the Brunovsky form
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with indices , . With a Dossible kao :,g - 9
reordering of :he aS, we can transform our mon- (adif,s) - ifg]
linear autonomous system to the linear systam with
izcices 'Cc . if and only if (adf'g) - [f. &

(3)
a) the set C - $ij,[fg .......

(adI-f~, )o ..... [,] .. . (ad W-1 fgm) (adkf,$) -f,(adk-.fg)]

spans an n-dimensional space; Given vector fields ff 2  .... fr on Rn,
we say that this et Is tnvolutive if there exist

b) the sets C . function ijk wih

(ad _~Zf, )'  *. g 3 [f'g]" . , (ad'Jf,gm)l [fE.fi](z) - ik(x)fk(x). I < i, j I r. ± ' J.

* k-:.
are ±nvolut~.ve for , - 1.2. .... , a; and If these vector fields are involucive and x0ce

n.then there is #A unique r-dimensional V" manifold

c" tbe span of each Cj is equal to the span S contai .ng x, so that the talent space to S
o at each xcS is the space spanned by
-Of Cj C C. fl(x),f 2 (x) .... fr(x). That is. S is the

unique integral manifold of f.!. .. . fr
Here [ fi 1 is the Lie bracket. (adf~gi) - 91; through xto Tzzis is, of course, due to the famous

(ad'f.gi) - If.g]; (adzf,hi) - [f,[fgi]]; etc. theorem of Frobenius.

For a '" vector field f and a V time-
" It is the purpose of this paper to generalize varying vector !ield S. we define

this result to our nonlinear time-varying system (l).
We give an example of a constructive proof of the
transformation. Details, proofs, and a description G'fJg) - S
of how to apply the theory in practice will appear (f.) - (adlf,$) +
elsewhere. (A

Historically, the problem of transforming a

periodic cimae-varying linear system to a linear time-
Invariant system is due to Floquet and Lispunov. (rkf,&) (rf,(rk-,fg))
-runovsky (1] gave necessary and sufficient conditions
for a linear time-varying system to be "equivalent" if h is a function, we define the Lie deri-
to a controllable time-invariant one. Mayer and vative of h with respect to f as
Cicolani in [4] and [5] present conditions for their
nonlinear time-varying block triangular systems to Lf(h) a (dh,f) (5)
be transformed to a linear time-invariant system.
Their block triangular systems can be put in the where (.,.) denotes the duality between one forms
form (1). The second author in [6] has given a talk and vector fields. Similarly, we let
on the single-input case.

[-" Lx°(h) - h

For transformations of autonomous nonlinear
systems to linear systems we refer to the work of Lf'(h) - Lf(h)

Kener 17], Brockett (8]. Jakubczyk and Respondek (6)
[5,. and the authors ([2], [4], (6], and [10]).

In section I1, we give definitions and preli- ' k-
irnaries, and section III contains our main result Lfk(h) - Lf(L"(h))

-A ,on transforming nonlinear systems.
Fore W one form w, we have

II. Definitions

If f and g are V" vector fields on a -an)- 2x (

fold M (1n in our theory), the Lie bracket of
f and S is where * derotes the transpose and */Dx and

.'- _ f/ax are Jacobian matrices. For this derivative,

* s we have
x -ax 9

Lx" (.) -

whete 1-/$ix and 3f,' x denote :acobian atrices. -f:(..) = Lf,.)
..e define (B)

k'- ~~~c- L .," :-
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An important formula relating some of these
Lie derivatives is

Lfl(.,g) - (Lfl.().g) + (.df.[g]) (9)

As noted before, we wish to transform
systea (1) to the system

, - Ay + vB (10)

where we have the Brumovsky canonical form aso-
ciated with .K2 . ... ,. " ere we have set
y : (Y ,Y20 . . ., Y) = (T1 ,T2 , . . . T,) and
v - (v,*v, . . .. va) - (Tn+ TD+, . . ., Tnm).
The matrix A is

1 0. ... . 0 00.. ..... 0 oo. . ".... 0
0010... 0o0.........oli

1 . .

1 - I

0 0 . . . . . 0 0 0 . . . . . 0 f 0 0 . . . . .
00..........00............1 T T............0

0 0 0 . . . . . 0 0 1 0 . . ... 0 0 . . . . . 0

0 0 1 0...1
U . I

l iI (11)

00..........O o 0..........0 l o........0
- - T T ------------

I .

0 0 . .. .. . 0 0 0 ..... 0 0 0. . . .0

.1.0 01 01 0.. 0

0 1 01. 0 . . . .
I

00.......010...... oo ..... 0 ol0...........0
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and matrix 3 is -KdT 'f U51 ot 1+

10 0 .... 0 Jot

KT02,f + U4 4 + -r
oJo

10... .0o o ...

0. . .. 0 DT(" Tam, f + +ui m

0 0 .... 0 (13)
(co luded)

•wih . the matrix

0 ... (12) fT'c2.g) (dTq,9 2) . . . (dTVr,&m)
(0 1 0 . g (1

"- ".(14)

,0 -0 7 7 7 0 [(dTa. ) (dTo og 2 ) (dTO.....

0 0 0 being nonaingular.

Using the Leibnitz Rule (9) repeatedly, ourCIA necessary and suffiient conditions for the xis-

tence of a transformaton axct f.nding functions

L0 . TITV3+ 1' . . .' +1 satisfying

- --(dT,.(rif.g,)) - o, j - O, . . -2

III. Partial Differential l ons and I - 12, .... a

The problem of transforming system (1) to rdTC F1 (rJf° . 0. j M 0,1 .. .. 2
system (10) reduces to the study of a system of and ± a 1,2 . ... m
partial differential equations. We let
Cl 0 41. 02 0 91 +

" 
I(2" "

-a a + K + Km n; note that the

equations in the following lema are derived in [3]
for the autonomous case. (dr- ,1 '(rif'gQ) 0d% -,(~f ) o, o . ., .... Ica 2

Lemma 3.1. 2-1 and 1 - 1,2....

The system (1) is transformable to the linear (15)
system (101 if, and only if, we can solve the such that %he matrix
equations

(dTrSg) - 0, 1 - 1,, ... (dT,(r• • • e )

a% - 1, + * (dT ,. ,(r IZC
1 8f.9 1 )) . . . (dT +,(rC 2- .f,g ))

a--, C +.......

n - I and i 1,2, . m

(dTL.f) + -i TE1 L - * <cn' i'(911)) CKM

7M-1, C 1.. - is non'singular. his leads to our m ain result.

.'..
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Theorem 3.2. as ve let 2,s4. and ss vary (with s, fixed).
Since T1  sI is Constant on each integral Mani-

*The tima-varying nonlinear systm (1) is trans- fold, T.  does satisfy
formable to the time-invariant linear system (10)
I f, and only if, (dTi,(rJf f,)) - 0. j - 0,1 and ± - 1,2

a) the sat C - (g1 ,(r~fg 1 ) .. ., Also, since C2 n C is involutive with t fixed,
(F -lf~g),g,(r f,$2 ), letting a% and s, vary (with s fixed),

. . f2we find an integral manifold of C. A C. Our
(r -f,), . . ., ,(rs f,gs), . .. , choice T. - s1  is constant on each such integral

(r%-, g )) spans an n-dimansional space for manfold and

each t; (dTk,,gi> - 0 for i 1,2

b) the sets C1 - {g1,(rif,5), .... Example 3.3.

(r -if,'g).,g2 ,(r f,&2), ' Consider the system

* (r'rj-, 5 ) .... ,(r f,gs) . 1
(r -2 f,g )) are involutive for each t and [$i] sin x2 0 0

j - 1,2, . .a ; and in "3  0 0

c) the span of each Cj is equal to the span + 0 +u 1  1+t +u 2 0 (22)

of Cj A C again for every fixed t. +

We show a constructive proof of a solution to x
(15) and (16) under the hypotheses of Theorem 3.2 I00
and the assumption chat n - 5, sc1 a 3, and K2 a 2. L... L J
We introduce real parameters s , $It 3 , 5s 5 oC- on U xVCR5 KR ,here

Let x(s91 ) be the solution to the system

dx (r2 ,f.g) (17) 2- (x1,x,,x,,xxs) 2- x1,xI •

satisfying x(O) a (00 . .., 0). the origin in V - t - t

is. Next, we denote by x(si,s2) the solution of

dX (rlf,) (18) Computing, we have

with x(s1 ,0) - x(s1 ). The 5-tuple x(sx.s,,s,) is - tthe solution to -(1 + )cos x3

dx (rlfg.) (19) 0

with x(s1 ,s-,O) - x(s,,s2 ). Continuing, we solve 0
in order

dx s ad x -dx (20) Cos x )

to find a function x(s1 ,s2,s83 s,,ss). From the (ad2 f.g 1 ) = 0 , (f,.] 1
hypotheses of the theorem, we conclude that the 1

Jacobian matrix of the function with respect to 0 1l

, s is nonsingular at the origin. By 0 o

rse function theorem, we can solve for
5 1 ,SsS.,S.,s ,.ss functions of x ,x 2 ,X,3tx 5. (23)
We note that x(51,s 2 t53s,,ss 5 ) is also a function

* of t, and this inversion is done for each fixed t. Thus

Thus. if we can choose, in the .s,.s. ,'s s  F 0 1
space, solutions T, and T. to _ -(1 + r)cos

(dT,,(r srg±)) - o, j a 0,1 and i - 1,2 (r1'g) " |  (24)

S(dT,,,(rjf,g1)) - 0, j - 0 and £ - 1,2 (21) 0

then we have a transformation (for our choices the
matrix (16) will be nonsingular). We let T - sx
and T, s.- Since C, ") C is involutive for
fixed t, we get an integral manifold of C. n C
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" T,.

0 fid0a teo ~ The fu~nctions T2 1 T.Ts,T 6 . and T7 can befound o

"I2& from euilons (13).
',''.'"..(conclude) IV. Conc lsions

are satisfied In a ighborhood of the origin. We have mentioned results that classified
Solving those nonlinear time-varying eytms like system (1).

vhich can be transformed to controllable linear
_-- (" fe time-vari at eystm. We also outlined a thod of

IL constructing suck a transformation in the cae
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Data base for symbolic network analysis
* OC.-C. Wu, M.S., and Prof. R. Saeks, M.S., Ph.D., Fel. I.E.E.E., P.E.

Indeuing terms: Linear networks. Transfer functions

Abstract: A data base for generating the symbolic transfer functions f6r a Linear electronic circuit is formu.
lated and an appropriate retrieval theorem derived. The size of the required data base is O(n) independently
of the number of simultaneously varying parameters, where n is the total number of component output
terminals, and the cost of retrieva is O(p 3) multiplications where p is the actual number of circuit parameters

* " which vary sinultaneously in a given analysis. As such, both storage and computational requirements are
minimised.

List of symbols
Matrix Type Dimension Index

a = composite component input vector m x I
b ME composite component output vector i x I

* u - composite system input vector V x -
y - composite system output vector q x 1
L -1 connection matrix m x n
-z -M connection matrix q X nq--• q *-z = t row of L21 I x n q = 1, 2, ..... q"

L13 = connection matrix m x it
L -2 vth column of L12  mx I = 1,2,...,
L = connection matrix q x v

- L29 - q-ventryinL2 I x I q-],2.....q;v-l,2 . v
S = composite system transfer function matrix q x v-
5" V = q.ventryinS I x I q-1,2,..., - . , V
Z = composite ,omponent transfer-function n x m

matrix
Zo = nominal composite component transfer- n x m

function matrix
Z, = composite component transfer function n x m

perturbation matrix
Ck = column vector characterising pertur- nx 1 k = 1, 2,...,k

bation of kth parameter
C " array of the c" vectors for the parameters n x p

which actually vary (row [ck] )
. = row vector characterising perturbation of I x m k= 1,2,..... k

kth parameter
R = array of r vectors for the parameters p x m

which actually vary (col fr ] )
8 = kth variable parameter l x 1 k= 1,2 .... k

= array of 8"s for parameters which actually p x pvary (diag [6]))

1 Introduction transfer function is required. Of course, the benefit to be
achieved via such an approach is dependent on the size of the

Historically, symbolic network analysis has been motivated by data base and the ease with which a symbolic transfer function
* the problems of circuit design and, as such, the emphasis has may be retrieved therefrom.

been placed on quickly and efficiently obtaining a symbolic The obvious manner in which to generate such a data base
transfer function from a given set of circuit specifications [2, 3]. is to simply precompute the coefficients of all required
In an operational or maintenance environment, however, one symbolic transfer functions and store them in the data base.
is typically given a prescribed nominal circuit and desires Retrieval from such a data base is, of course, immediate, but

" to determine the effect of various (possibly la'rge) perturbations the data base may become overly large. Indeed, the number of
thereon. This is the case in a power system where one is given transfer functions which must be stored is 0(k) where k is the
a fixed network and desires to determine the effect of proposed total number of potentially variable circuit parameters and p is
modifications thereto. Alternatively, in the problem of the maximum nLnber of circuit parameters which may vary
analogue circuit fault diagnosis, one desires to simulate the simultaneously. An alternative approach is to store the nominal
effect of a number of alternative failures, to compare the transfer function information and then use Householder's
simulated data with the observed failure data [4]. formula I!] to compute the required symbolic transfer func-

In such an operational or maintenance environment, tions. In such a data base we need only store 0(n') transfer
numerous perturbations of the nominal circuit are studied and, functions, where n is the total number of component output
as such, significant computatioral efficiencies can be obtained terminals, but retrieval requires 0(n' + p3 ) multiplica:ions.
if one first generates a data base in terms of the nominal circuit where p is the actual numbet of circuit parameters which vary
parameters and then extracts the appropriate symbolic transfer simultaneously. Since, in practice, n ) p, the retrieval process
function from the data base each time a dIfferent syrilboiic requires approximately 0(n3 ) multiplications and is dominated

P by the large dimensional matrix multiplication required by
; Pa~Nper I S12G. first received 21st Novemner 1980 and in final form .. le' fruarher than the lowdimrnsional inverse.

I th June 91 Householders formula rathethnt .d.i .

' The aputhors are with the Departments of Electrical Engineering, Teiss In the present paper, we ill formulate an alternative data
Tech Uniersit). BfO '439. Lubhock TE '9409, USA base for the svmbolic transfer functions which also requires
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% .. , ,, , ,c iu b uniy uJdp) u.uy variaoie component parametes though at most p such
.-. multiplications. Since p is typicaly small, this is tantamount parameters vary in any given analysis;p < p 4k. Indeed,P 4(k

to immediate retrieval in most applications. Finally, we note that Z, can be expressed
In the rest of this introduction, we will review the properties more concisely in the form

of the component connection modei for a largescale circwt or Z =
system 11,6,71 which serves as the staning point for our where
heo*,. The data base and retrieval formulas for the case where where

p : are formulated in Section 2 and the general retrieval C = it : cP]  (0)
formula is derived in Section 3. Section 4 is devoted to the , "'(
problem of retrieving sensitivity formulas frcm the data base r

-and Section 5 deals with the problem of updating the data
base when the nominal circuii parameters are changed. Finally, R 21(1
Section 6 is devoted to several examples illustrating the theory.

The component connection model is an algebraic model for
an -interconnected dynamical system which subsumes the LrPJ
classical topological models but is more readly manipulated and
both analytically and computationaly 1, 6, 7]. The motiv-
ation and justification of the model are discussed in detail in 6
Reference I and will not be repeated here. The component A2 (12)
connection model takes the form of the set of simultaneous •
eouations:

S _.(1) aPIb Z~) a

-. a = L11b+Lau- (2)
and The above-described notation, formulated for the component
v L3 b + Lnu (3) connection model, is summarised in the list of symbols.

Here, Z(- Z(jw)) is a frequency-dependent matrix charac. 2 Dea bu
ising the decoupled system components with composite Our data base i composed of the following family of (fre.
component input and output vectors a and b, respectively. On Our depebe scapar t e fonctins:

the other hand the Lu; i, - 1,2; matrices are frequency- quency dependent) scalar transfer functions:

independent connection matrices charactering the coupling s - LU + L11(I -Zo 1 1 )'Z.LL=
between the composite component vectors a and b and the
composite system input and output vectors u and y, respect. q - 1,2... q; v - I, 2 ... t (13)
Jvel>'. b " - Lis (I - Z */-. )' cj

A little algebra with the component connection equations
U wilreadily reveal that q - 1,2,... ,q;f - 1,2 ... k (14)

S." - L 0 +L( (-ZLi)'1ZL 1 2  (4) Z rOl L2(-LI)'Z.]L' 2

where SwS(jc)) is the composite system transfer function k - 1,2... k;v - 1,2,... ,V (15)
matrix [I ] characterising the external behaviour of the system and
via .- SUW)U (5) - rkLII(l -ZOLII"'c l

k = 1,2,...,k (16)
Often. rather than working with the entire S matrix, we find it
convenient to work with its individual entries; s', q I Here, q and v denote the number of external system inputs
1, 2 .... q and v - 1,2,.... v: which are related to the and outputs which are typically few in number. As such. the

- component connection model via ci array, composed of k2 entries, dominates the data base.
Also note that all the entries in the data base are formulated in0" - L!. +"4 ( L11)'Z '' (6) t rso

+L1 1 1 )' 6 terms of the nominal component values and, as such, the data
-Here L' is the q- entry in L=; -, 1, 2... q and v - base may be generated off-line withcut a pnropi knowledge of

,2..... , L, is the qth row of . ; q - 1,2t.... hq; and e perturbations to be analysed. Finally, the entire data base
L': is the ch column ofL 12; v - , 2, .. . , v. may be generated with the aid of only a single n by n (sparse)

Finally, since we are interested in analysing the effects of matrix inverse.
pe."turbig one or more components from their nominal values, Now, if we assume that only a single parameter is perturbed,
we de:ompose Z into nominal and perturbation terms in the i.e.

- form Z, = cksrk' (17)

Z Zo + Z, (7) for some fixed k-I, .... , k, to retrieve s" from the data
where base we must evaluate

Z, C f c8 1 f (8) = L +L9,(l-[Zo+c?8'r*]L,,) "'

Here. ch { Ck (/U)) is a column vectorr' [- r'(ifw)) is a row [Zo+ch rI] L (18)
.le-tor. and 6" is the scalar perturbation for the kth potentially in terms of the elements of our data base and the varable
ariable component parameter. In typical appLication one is parameter Sk. To this end, we invoke Househoider's for-

% -,en c. r. and 6  
-: k 1.. k; charactensing A poien. mula [1]

-.• .I. _.SAASAA~.. .- 4
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(W + XY) = W - W -1 X( + YW' Xf-1 YW -  (19)

with

W =(I-ZoL 1 1 ) X = -ckk Y = rkL1

obtaining

- (1- [Zo + ckkrk IL,,)-l = [(I -ZoLi)+ (_C18k) (kLi)]-

= (1 -ZoL -
11 Y + (I -ZoL 1 ) ck( - rkL1i (1 -Z oL 1 )- ' ckSk-r" L,1 (1 -ZL 1 , )T

= (1 -ZoL )" + (I -ZoLI,) - Ick kr L(l -Z o L 1 ) - 1

1 - 6 kekk (20)

! • Now, on substitution of eqn. 20 into eqn. 18, we obtain
s
3
Q = L!v + L~j (1 - [Z0 + ckkrk ] L I)-' [Z 0 + ckl ]rk Lu,,,

=L +LQ (1-Z oLI)-' [Zo +ck6ky* Lv !
L2; (I -Z oL) 1 ck krkL, (1 -Z oL1 1 )' [Z0 + Ckakr

k LU1

= g--- kbQrkLI(1 -Z 0 Ln)-'Z oLva2 + (6k) 2bqkekkrkLrL 2sS + ak b'arkL +- 1 -Pe k

= S + skb~kdkv + (8k)2 [-bqke'rkL 2 + bekehkrIkLUa] = U + 6k b qkd (21)49 1 - kekk I -ak e kk (

which is the desired symbolic transfer function.

If we assume that two parameters are perturbed, i.e.

Z, = Ck~krw+c16)rJ (22)

a similar formula can be obtained, wherein Householder's
* formula is applied twice. Since this formula is subsumed by
- - the general retrieval formula derived in the following Section,
* we simply state the result without proof. In particular

Ss
" = L12 + L11 (I - [Z0 + ck hr + c8rj] LI)'t [Zo + ck6krk + cJb'r] LU1

= SS + Skbqk~ + 6ibjdju + Sh5J(- .ekkbqidju -eJibqk dhv + ekib~idiv + ejk bQidk") (3
*I - 6 ekl - 6'eJ + 6k 81(e kkeii - e'e A23

3 Retrieval theorem 12

As is apparent from eqn. 23, our retrieval formulas are quite b b

complex, even for the case p = 2 and, as such, a more compact b2  ... b 2P

notation is required if they are to be tractable. To this end, we B (27)
assume that 6k; k = 1,2, ... ,p.denote the potentially variable
parameters, and that b ' b ... bW

Z,= ck'a'r = CAR (24) d " d 2  ... dtv

Of course, the same expression applies to any set of p poten- d2' d22  ... d2V

• ".tially variable parameters, given an appropriate change of the D = (28)
* index set. To obtain the required symbolic transfer function

" for Ld" dP2  dPv

S = L22 +L21 (I-[Zo + Z IL )' [Zo + Z]L 12  - e1 12 e
e e .. e
z(25) e ' ... e 2

E . (29)0 with the above specified Z, , we now define the following
matrices made up of elements from our data base:

s ' so ... s"] and A is as defined by eqn. 12.

so so ... Theorem

SO= (26 Using the above notation,

S =* + LL:2 L,(I-[ZoZ I]L.,) -  [Zo+Z]L 2
," s 42 s ... s".. .

3- *



Proof: First, we observe that respect to a parameter 8' can be computed via the formula

So = L:2 +L-z(l -ZoL 1 )1 ZoL1 2  (30) dS = Ld(-ZL z)" [1 [ L3 (-ZL,-'ZIL

is just the nominal system transfer function matrix, and 1
B = L21 (I - Zo1 1) C (31) and hence it is appropate to ask whether or not such a

and sensitivity matrix can also be computed from our data base.
D = R(I - Ll( -Z 0 L 11 T'Zl LI: Since the expression

,. S = So + B(0-,. .AD (35)
Ro= R(I -,7 1 )- (31)

v u d f a ais formally identical to eqn. 4, if I < i 4p. we may write..- via Householder's formn.ula. Finally,

if = RL 1 (1-ZoLt[)'C B( - A.)-i Mi[I+E(I _,ET1 A!D (36)

where R and C are as defmed by eqns. 10 and 11. As such, ( E(3

S(-AE-' " = (l-AR 11(-Z L 1 YV ) 1  where

= [I +ALU (I -(I -ZoLl 1 )'CARL,, 1 ' x 0

(I -ZLII ) C] 0
~0

= (1 + ARL,1 (1 -ZoL 1  -ZL)'C] dA (37)

- [I + ARL(1 -ZL 1 )1 'C ] (33) Mi = dS•

where we have invoked Householder's formula with Z = I, [.
SX=A ,andY=(--ZoL I )' C; and eqn. 9. As such,

So + 2( - aE)-' AD - So + L21(I -ZoL,) " , x with the one appearing in the im diagonal entry. Clearly, the

C[1 + ARL1( -ZL,)- 1 C] x expression can be computed directly from the data base with
the same level of compuational effort as required for the

.R(1 -L:uZe)-'L 2  retrieval formula.
- S Ix In the case where 81 is not included in the given set of par-

Sameters which deviate from nominal, i > p in our notation, we

(I -L 1 Zo-Lt 2  must first augment the B, E. D, and A matrices to incude 6 i

=S + L 21 (I -Z 11 -' x and then apply eqn. 36 to the augmented system. To this end,0=S'Ll]-ZLI -  we let

{[(I -ZL 11 ) + ZL,1 1(1 -ZL 1 )-' }Z (1 -L,,Zo)"LI 2

So +L /1 (l -Z041 ,7'(1 -ZoL,)x
211]:: (I - ZL"1 )-t ZI (I - L I Zo)'l L 12 B= b a l  b= ... " b2P P[ l(

= So +L 2 3(1 -ZL 1 )'Zl 0 -L, 1 Zo)'L,2 b

= L:a +L,(l -ZoL,)'ZoL, 2  b

• L21(l -ZL,)'fZ,(I -L,Zo)'L, " d'2  
... d"

- L22 +L2,Zo(I -LZoY'L 1 2  d d2 ..

+L 21 (l -ZL 1 1 )'Z(I -L 1 Zo) " 1  D(D' (39)
- L2 +L:, [Zo + (1 -ZLl.Y Z, 1(1 -L,Zo)-'L1

N dp' dp2  
. d"v

- L 22 +L:,(l -ZL",)' [(1 -ZL,I)Zo +Z] x d' id . dv

(1 -L 1 ,Zo0 ' L 12
= Lu +L2 I(! -ZLI) " (Z-ZL1

Z o ] x el e ... e1 ' el'

1 - L,Z,)'L,- e', eP* ... e:P eP

- L 21 ( L - )"ZZII L , 1= X E .1 S e(0

* as required.

and
4 Sensitivity formulas

If one is working directly with the component connection ., = [a. (4)
model, it is well known [4] that the sensitivity of S with 0

A4..,-



Then we obtain the retrieval formulas 6 Examples

S =So + B'(l - AE') -  AD' (42) Consider the simple RC op-amp circuit shown in Fig. 1. The

and component connection

- = ( -IA*' -' , 1  [ + E'(1 - AaE i)'A D' E -
±S-1 R

(43) K

5 Updating the data base Vi  VI V2  Vo

In many applications, one uses a data base such as that __ "_o

described above,as a design too] to aid in simulating the effects
of various proposed modifications to the system. When such a Fig. I RCop-amp circuit

modification is finally implemented, it is then necessary to
update the data base to reflect the new nominal parameter model for this circuit takes the form

valuesFs 0 v7

20 = Z 0 + Z ck s5 = Zo + CLR (44) v, 0 R 0 i, (50)

With the aid of Householder's formula, we may compute V2_ 0 0 K_ v

(I - 20Lj 1  [(I - Z0 L1 1 )-RL I IFo - l -i ic- ril
= (l-ZoL) - ' +(1-2 LI)- x ' 1 0 0 V, + 0 (51)

C[I - RL, -(l ZoL 1)- Cc-' X Vj L0 -1 oV2 I
RL, 1 (l -ZoLIT'

: (I -ZoLI) -' + (1 -ZoLII)' x V o [ 0-1-[0 1  (52

C(l -AE)"tRL 1 (1 -ZoL:) - l  45) V-

which, on substitution into eqn. 16, yields V

elj Thus, if all components are taken to have nominal values of

ei 1, we obtain

i'k = e"i+ [e' e12 ... ekP] (I--'& (46) 1

Lkep'[.J (I -ZoL,,) = - (53)

Similarly, 0 1

e2- (I -ZoLn) - I I -S (54)
=b + [eebqbi . . .b9] (1 -AE) iA (47). --1 s+ lI

s 0 -S

and L 1 (1-ZoL,,) - 'Z  s I 0 (
=k kg., [ k'b2 

. .b (I -AEy'A (49) and S+

by th e r le forul. e (48
an L,(1-ZoLj,- Z 1 0 -S

As such, the entries in our data base can be updated with a
computational effort which is commensurate with that required
by the retrieval formula. Now. ,, 'A e -. : .
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and K via the nmatic" Finally, if we desire to update our data bse to reflect a

-s new nominal value for the circuit parameters of C - 1, R -:1.
and K -2, we invoke eqns. 46 through 49 with 6 - .

c'at ,,0 6alP 0 01 (58) yieldig

* b'8'd' I 2
00 1o -so +I "a ' - (67)

Ii I

0-' e' 13o3 e"6' (- )5(- ) I
C, 2:62tr2

1 ~0 62 [0 1 01 (59) pi Mn llt + O 0+_ s-

L 0 (68)
and and similady for the other elements of the data base.

0 As a more realistic example, consder the 24sap feedback[1.amf 0er) F * 2, when, ,, befor, we take -" nominal
-36'r 0 61 [0 0 1] (60) cmpon i peaametm to be one to smplify the ulumtion.1.1"" The component connection model for this circuit takes the

-"'' " fore:

Combining the appropriate cand oJ aulceswith the above .1 0 0 0 0 o 0 0 0 0'
.exprem a per eq. 13 through 16, we obtain the data 0 1 0 0 0 0 0 0 0 0

so- 1 (61) 0,j 00 1 0 0 0 0 0 0 0 ,

l . -- s b2-- 3 -S+1 (62) e. 0 0 0 1/$ 0 0 0 0 0 0 1"

d' - I d2- 0 d' - 1 (63) '., . 0 0 0 0 11$0 0 0 0 0 i ,

and go 0 00 0 0 1 0 0 0 ,
el M0 1 M0 n4.. 0-.0 0 0 0 0 1 0 0 0

C" - s e= o 0 U9 (64) ,. 0 0 0 0 0 0 0 1 o ,

e n. .. s e _n -Mn s o, o 0 o 0 0 o o 0 1/ 0 1'.

"where wi have deleted the qadvnd iewdnce- easedealing ',,j 0 0 0 0 0 0 0 0 0 1/s i%
with a sinln .input/di.output 1y1em.-4
. Now, if one des to compute the symbolic trainer func- (69)
don with respect to perturbetom in the op-amp pin, we have and

0 00 0 1 0 00 0 0v. "
*., -1 0 0 0 0 0 0 0 0 0 4, 1

1 0 0 -11 0 0 0 0 04 0
1., 0 -1 1 0 0 0 0 0 0- 0 V" 0
, 0 01 0 0 0 0 0 o+ (7)

0 00 0 0 0 00 0 1,
1 0 0 0 0 -1 0 0 1 0 1,.. 0

0 0 0 0 0 1 0 0-1 -14,' 0

i., 0 0 0 0 0 0 -1 1 0 0 V, 0

-'., 0 0 0 0 0 0 0 1 0 01 V,.. 0

S(s,6) - So+ b3d 1 + (67) C1 C3

." RecallIng that 63 represents A perturbation from A nominal
parameter value of KO - i, our actual pin is Ki KO +' -a a,
I + 63 which, on substitution into eqn. 65, yields

-- Va ,4 : .
.S(S. K) -(66-)t+

; which is I he classical gain formuls for such a circuit. ]8 Pit. 2 2-roteeeedbeck amplfper



o- [0 0 0 0 0 1 0 0 0 01 v, indicating that the first stage of the amplifier now has a pair of

-complex conjugate poles at -- /2 + %/3/2, as is expected for" l" this circuit Of course, the second stage is unchanged, retaning

il its poles at s - - 1.

Va7 Conclusions

The preceding development has been motivated by operational
and maintenance considerations rather than the design con-

O siderations. In such an environment, one typically deals with a
fixed nominal system, but carries out repeated analyses
thereon. As such, the cost of generating the required data base

., is secondary compared to the cost of storing the data base and
retrieving information therefrom. In these respects, we believe

• e, that our data base in near optimal. Since the number of system
inputs and outputs is typically snail, our data base contains
approximately k2 elements (actually k2 + k(v + q) + vq)
wherek is the total number of parameters which are potentially

+ [0] s,] (71) variable. This data base, however, contains sufficient infor-

* Now, after involdnl the indicated operations, the entries in mation to permit one to retreive symbolic transfer functions

our data base for qJ -1,2, and 3 take te form: for any number p (k of variable parameters. Indeed, the
number of variable parameters in a symbolic transfer function

1 _ is reflected only in the cost of retrieval which is of the order
(So = ( I (72) of p3 multiplications (actually p3 +p 2 s'Apv(qlV I)). Sincep

is typically small, say five or less, this is minimal.,2+3,+l 1 1
Sb' - (2+ 3S-+jIbs (73) 8 Werene
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Diagnosability of Nonlinear Circuits and
Systems-Part II: Dynamical Systems

* RICHARD SAEKS, FELOW, IEEE, ALBERTO SANGJOVANNI-VINCENTELLI, MEMBER, IEEE, AND
V. VISVANATHAN, STUDENT MEMBER, IEEE

* Ahstumct-A theory ford the dlguatyo e u dyami genral nonlinear dynamical case. The sequence in which we
em, sile ae the an in Part 1111Jfor memorylkee systmsopeetorrsls aall hto

p de d It Is bood *a am Imp-at mode=W of t system b. aprsnourelt alebhtof[]

dlaesbhlt te ysem wic iaik teolatm mtrils, e. 11. PROBLEM FORmLATION
ed.L A Wkskbfilah camidi Is anm dolired.t sIs Wwo do for For a nonlinear dynamical system given an iptwaveform,
locally diagmooeble systaim, thbere exist a fluke amober of test tapols, nu
dotht are eaffidm te Iao s the system Mot"exoaples an a set of initial conditions for the states of the system, and a set

of parameter values, the output waveform is uniquely defined.

findex Turuu-A*WI~ map dynadml systems, Fradhs duluedm For simplicity, we assume that the initial states are fixed at
Hibr spmlcldaaml~tma~ zero (if they are unknown they can be subsumed into the pa-

rameter set), and that all measurements are taken in a fixed
1. INTRODUCTION time interval [0. 1 ]. Specifically, we consider system with p

input terminals, q output terminals, and k parameters that can
N NPART I I 1J.a theory for the diagnotability of nonlinear be described by the equation

meoyessses(dc circuits) was developed.' The -f )()
thery onsstsof hefollowing parts: Aa

I) a necessary and sufficient condition for the local diag- where, u e U c P [0, 1 ], the space of R'-valued piecewise
-nosability of the system, continuous functions of timeon the interval (0, 1], y e Y -

* 2) simplified tests for local diagnosability, 1, 114, and a e A c I; A is open. Note that with an ap-
-3) it theorem, establishing that, for a locally diagnosable propriate inner product, Y is a Hilbert space over the field of
system, there exists a finite number of test inputs that are real numbers [4]. Also, we assume thatf: U X A - Y is con-

-sufficient to diagnose the system tinuous in u and continuously (Frechet) differentiable [5] in
4) sufficient condition for single fault diagnosability. a.
The main contribution of this paper is to develop a similar At this point we introduce a simple example (see Fig. 1),

*theory for the diagnosability of nonlinear dynamical circuits which we will carry along with us to illustrate the various
and systems. Similar to [I), we work with an input-output definitions and results in this paper. Note that the circuit
model of the system. Unlike the menoryims case, however, the contains both linear and nonlinear resistors and inductors, and
inputs and outputs are in this case, functions of time and are as such, there exists no systematic technique to test the diag-
hence properly considered to be elements of an infinite di- nosability or this circuit. The voltage u(-) is the input, while
mensional Hilbert space. However, since the parameter space the measured output is the current y~.The various branch

*remains finite dimensional, in spite of the finite dimensional relations are
setting, the theory yields a finite dimensional test matrix. Our
objective bmtnerefore, is to indicate a mechanism whereby -I

the existing dispnosability theory for linear system [2] and IG- GOG
nonlinear memoryless system [I) can be extended to the ir - o

Manucript oemivediJanuary 7. 1911:revisodi une 7. iWI. Thswork was -f 01
supported in part by the Joint Services Electronics Program a Tea ec h set of parameters is given by
University under ONR Contract 76-C.I 136. and the Joint Servilctrni
Prosrmnat the University of California at Berkeley uidor AFOSft Contract a InG r T
F49620-79.C.Ol78 75.[ofG

Rt. Secks is with the Depsrtmenit or Elctical EngineeriMg Tenn Tech where- r' denotes the transpose. The input-output model is
University. Lubbock, TX 7940.

* A. Songiovenni.Vincentelli and V. Vinvanathan arm with the Depsrtment given by the equation
of Electrical Entineering and Computer Sciences. University of California,
Berkeley. CA 94720.

1A brief review of the analog fault diagnosis literature is available in y(t) - o(eina(f)I) + GuQt)
MI.
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y(M) to the self duality of Y and R k. J,,(u, a) is a linear map from

. 0 1 6t)i Wo[t) '70 Y to R k [4]. To derive the adjoint map. we first define the

.0 lt)(. ~ ~ 1 ~inner product in the Hilbert space Y by

.. " (xly) I x(t)ry(tOdt Y xye Y
:. Fig. I. The iisusaiv ezualst.

,and in R , in te usual way

+ r u ()dr + -y u(r)dr)2 (2) (ajb) - arb Va. b e tk.

We now present some def'ntion that are als available in It now follows from the definition of the adjoint map [4]

Pan [1, Ibut ar relevant to the results presented here. that

Deflrdton1:Thepa r w pointaO A issidtobel0 J*(u, a): y f (uM), ary()dt Vy e Y.
caUy diagnotabie if ther exists an open neighborhood B of
A, such that Va a Ba a .°  U 6 U, such that Thu JO(u, a)J(u. a) is a linear map from R Ato R", and

fAu, °̂ ) "Au, a). a can be directly identified with its matrix represetation by the
- flairi Z- The sytem (1) is said to be lcaly dfagmoa- following equation:

able if almost all (i., A except possibly those in some closed,- A.,f j' u,.,,, 4
sublet of A with Lebesgue measure) a e A ae locally (4)
diagnosable

Deftnition 3: Let M(a) be a matrix whose elements are NotethatJ(u,a)J(ua)isasymmetric, poitivesemideftite
continuous functios of a everywhere in A. A parameter point matrix. Observe that for our example, the top left 2 X 2 sub-

matrix of J(u, a)J(u. a) is given by
c e# , -l) d r (eAi.(I) O O M A*.* (O)- l) (t i )(Ioull(,)')

" ' "-tI)(Iou(t)e())dz 3 (Iou(t ,,)eD~)Z:, J
a* Ais said to be a aegiuarpoint of M(a), if there exists an The remaining elements of the matrix are similarly defined.
open neighborhood o( e0 in which M(a) has constant rank. Note that J(u, a)J(u. a) is a matrix-valued function ofu and

0 a. To derive a test matrix that depends only oan a. we integrate
To define our tast matrix,whichissimilar totheoneintro- JO(u, a)J(u, a) over all possible inputs. To this end, let w

duced in [1], we let J(u. a) denote the Frechet derivative of denote a positive measure defined on the Borel sets of U [6),
f with respect to a, evaluatedatunda.Withu e Ufied, suchthat w(V)>0, foreverynonnullopenset VinU.Then
fr iar A to Y. hence, J(u, a) is a linear uansformation2 from we define the test matrix
R to Y. J(u, a) can be described by the following map:

J(U, ic):,1 a (u. ~a Va. AF t

Lal
where I (U. a) is the matrix of derivatives offwith IlL CoND oNs FOR Loc DIAGNOL A IIUTY

.a In this section, we i it present a theorem that gives a nec-
.respect to the components of a. computed in the usual way and essary and sufficient condition for the local diagnoability of
evaluated at W a). For our example' a parameter point. We then extend this theorem to give a

- .a''" [I I I condition for the local diagnosability of the system.
(u, a) &W - I lou(t) IO) I Theorem 1: Let w(.) be any admissible measure for which• oa I I I IR(a) exists Va 6 A, and let a@ be a regular point of R(a).o u(r)dI u(,)d)l. (3) Under these conditions, the parameter point aO is locally di-

I - agnosable if and only if R(a ° ) is nonsingular.

Note that. in (3), when (u, a) is multiplied on the right by Proof-If" By the integral form of the mean value theo-
w a mrem (7] we have

an element of iB', i.e., the parameter space, the result is a
scalar function of time. i.e., an element of Y. However, (3) is Alu, a) -lu, ) ' (I - s)a)ds(a -
not the matrix representation of the linear operator J(u, a). 0 60

Let J*(u, a) denote the adjoint map' of J(u, a) [4). Due YueU, a A. (6)

'2int ftivythe Fu sduivae its t t pSuppose now that @0 is not locally diagnosable. Then there
Vlactittye poine apc t is ast a a imatit exists an infinite sequence of vectors, ai - a o, i -,-., -,(usa jo at the point nt whgeh it iS evluted~.

J A emvsinties of the p of 0t trAnpSPOS of a ma ra. such that

1.92



SAIS of at; nIAG%.OSABILIY OF .%OLINEAR CIRCLIS-PART II

(u, .) , flu @0) 0u g U, Vi e N. the finite dimensionality of the parameter space. but does not

Using (6) we have, for all u and i require that C. and Y be finite dimensional. Furthermore, the
result is independent of the choice of measure (.

f' . + (I - Remark 1: in exactly the same way as has been done for(u, l- )a)ds~a'] 0 linea systems [2) and nonlinear memoryless systems (I]. we

w. vhere a' - [o - ao1/1 [aO - aO1. Since a' is normalized to can establish that
-lie an the unit sphere of 1 kP which is a compact set. a' admits g(a0 ) & k - rank [R(a°)]
a convergent subsequence dJ, whose limit a also has unit norm.
Using the convergent subsequence in (7), we have is the measure of solvability of the parameter point a@, and that

its generic value g is the measure of testability of the system.

J ( aa The rank test on R(a) becomes a test for the local diag-
nosability of.the system, under exactly the same conditions as-jo Od [a] ,,f (u, aO)a ,,0. in the dc case. This is immediately obvious, since in both cases

Z a. the analysis is restricted to the finite dimensional parameter
Since a has unit norm. it is nonzero, while space.

Theoem .Sppos thtf~, a)is nalticwith respect to
a. "S (u(1). ^ 1)  a. Then

a 1) almost all a e A are regular points of R(of),
A -" 2) the system is locally diagnosable if and only if generic

O(u). ^ dt d -u) 0 rank R(a) = k. o

* j implying that R(aO) is nonsingular. IV. SIMPLIFIED TEST FOR LOCAL DIAGNOSABILITY
Only If: Conversely, if R(^t) is singular it follows from AND EXIrE.NCE OF TEST INPUrs

the assumption that *0 is a regular point, and Lemma I of (3 In the preceding section, we have discussed the conditionsthat them exists an open neighborhood V of a@ and a contin- under which'the test for the local diagnosability of a systemuous R * valued funcion (a) Pd 0 definedon V such that"v)oreduces to a rank test on the matrix R(aO), evaluated at a
r randomily chosen poin e. Similar to the.development in I ,

0 c(q)R(a)c(a) f f = awa)1  our next step is to derive a timple sufficient condition for the
.u ~Jo [ local diagnosability of a parameter point.

X A (ult), a)c(a)Ids do(u). Proposition.:Supposethatthere existsminputsuI, i I,
• -I- m e U such that the matrix

M
Since w(u)>and (u, a) is contiinuous in u, this implies E J*(ui, @)J(u",ct,)'im

that is nonsingular. Then @0 is locally diagnosable.

(0 a V. YueU. Proof. With u'i - 1,'- ", m fixed, the functions
• ;a •col (Au'. a), i - 1,-, m)

inally, we define a curve a(s) e V by.the diferential equa. is a map from A to Y'. By the inverse function theorem 171,
tion and the definition of local diagnosability, a o is locally diag.

SC(a); &(0) - . nable, if the linear map
'9 colJ(u, a@), i=l,--m]

Substituting a(s) intof(u, a) and computing its derivative from B t to YON, is injective. This is true if and only ifs [71
with respect to: via the chain rule (71, we obtain a -. ,m)) -

* A. AL . Null space (col(J(uS. ao),i-l'- ) 0
(u a(s)) =a (u, a(s)) = (u, a(s))c(a) - 0 M dimrnge(row(P(u',aO),,.l,-',m)]-k

showing that flu, a(s)) is constant along a curve emanating - dim range frow(JO(u', a0), i - 1. - -, m)- col(J(u,
from &0. Since a(s) is independent of u, this implies that a@ a), i - 1 , i) - k
is not locally diagnosable, thereby completing the proof. a

Forbrevity, inthe above theoremwehaveusedaproofthat - det J(u,a)J(u, a ) i 0.
is similar to the proof of Theorem I of (31 and is shorter than I
the corresponding one in Part 1 [I). Note that tho proof uses We now consider, once again, the illustrative example.

*This i asmII h ib initial sp f th prof of Lm a 1 s €olIA. 8) ,row (A.R) ( A13.
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Recall (3) and (4). As an example for the above proposition. y(I

weevaluateJ-(u. ,)J(u. a) for the input . )A(tit
uOQ~~Vt 4Fs [0, 11

and the panmear values

ao -[1 1l 1Fig. 2. Circuit ror J'mpl,,

Note that
(uS. a)- [e' -I -a[io/21g4/2 We ]e

da o - [1 1 1 1

0.75796 1.09726 0.50000 0.19247 0.06613"
J1.09726 1.59726 0.33333 0.28172 0.09890

JO(O, ')J(u °, a0) - j 0.50000 0.33333 0.33333 0.12500 0.041671
0.19247 0.2s172 0.12500 0.05000 0.01786

LO.06613 0.09890 0.04167 0.01786 0.00694J

Note that the above matrix is nosinguar. Hence, a ~is locally and note that
diagnosable. Further. since the input-output map (2) is a - [ , , du ,
lytic with respect to a. the system is locally diapgoable. (u. a0 ) - *M(') - I )e-(')iu(:) -(0t

£zample 1: Consider the circuit of Fig. 2. Note that tbe a a i

cacit is "degenerate." since we an applying a voltage source fou,()dI. (9)
acos a FpMe W. It is included here solely because it provides
asimpl but im iluMuaM Of Pro ition 1. Becase To study the dianosability of this system we try the test
o( the degenacy of the cirsk, and since we assumed zero input

oeial oditio.werestrict ourputstomntinuous functon u() - t Vie [0, 1).
of~i' thsisyi Evaluating (9) for u - u ,we have

u(O) aO.

~ r "ercict of Fi 2. F t2he hap t () is *ah Wnl d aW the (u'. a0) - (a' - 1 ie'!a i/21
3f5mt Y('), the Output. T various branch relations are and

.75796 1.09726 0.50000 0.50000 0.192471
1.09726 1.59726 0.33333 0.33333 0.28172

r(, ', a0)J(,, a) -10.50000 0.33333 0.33333 0.33333 0.12500[.
, 0.50000 0.33333 0.33333 0.33333 0.12500

' LO.19247 0.21172 0.12500 0.12500 0.05000J

id "io(* * - 1) Not themnkoftheabovematrixis4 andin fact, thethird
- G and the fourth columns are linearly dependent. Equivalendy,

c if the columns of (u ', ao) are onsidered to be elements of
, qc 2  . a vector space, the third and fourth columns are linearly de-.

ir In Kr. pendent.

Hence, the input,-output model is given by the equation Consider now the possible test input
:du " u,(:)- 2 t  Y t [0, l]

y(t) - I O( "h ') - 1) + Gu(t) + Cu(t) -Lu (t) A L 20 - 2 1
t & (U ,  ) " [ ell - 1 : t 2 t t3 t/3 j

+ r (",(r')dr. (8)
JO and

.o43930 ' 0.62862 0.29457 0.50023 0.083371
0.62862 0.90564 0.41755 0.71860 0.119-17

Jo(u3. a0)J(u 2 . aO) i 0.29457 0.41755 0.20000 0.33333 0.05556
0.50023 0.71860 0.33333 -0.57143 0.0924

LO.08337 0.11977 0.05556 0.09524 0.01587.J



S SAtW at W.: DiAGNOSALITY OF NONLINEAR CIRCUITS-PART II

Nice that. once aain, the rank is 4 and in this case it is the F has a column rank of at least 1. Using this fact as a starting
fourth and fifth column that are linearly dependent. How- point for an inductive hypothesis, we assume that there exists
ever, u, i - ,., n, such that the matrix F. has column rankj <

2 k, where n :5 j. We now desire to verify the existence of a
E J(u ,ao)J(u, ao) vector u"+3 I U for which the corresponding matrix F.1 has
.i-I column rank greater than or equal toj + 1. To this end we let

-is nonsingular, establishing that the system is locally diag- D be a nonsingular matrix of scalars which operate on the
noable. Finally, it is easy to verify that for columns of F in such a way that the (j + l)st column through

u3(t) =3 Yt [0, 1 the kth column of F.D is zero. Since D is nonsingular, F,+ I
will have column rank greater than, or equal toj + I for some

S the matrix . unI if and only if F.+ID has column rank greater than, or
Js(u 3, a)J(U' aO)  equal to.j + 1. Because of the special form of F.D, however,

"nv e tthis will be the case, if and only if, the bottom row of F,. ID
. is nonsingular. given by

*Once ithabenvrfethtasseislclydg W
it still remains to pick a set of test signals uJu, I - 1,.-.,mi, and ( 1"+ 1, oO)D

* to solve the resulting set of equations

-y'iu, ) 1,---m (10) is nonzero in columns j + I through k, for some un'*1. If this
is not the case, we may let d denote the (j + l)st column of D

"for a A. For this purpose we require that, for a representa- which is nonzero since D is nonsingular, in which case, we
r tive parameter point a°, the linear map from R k to Y, have

SH. A col[J(u' ,aO), i - l, , m - (u, cO)d -O Yu E U.

be injective, so that a Newton-Raphson type of algorithm will
be assured to converge to at, from a sufficiently good initial This, however, implies that

' gus6, More generally, if the property of iqjetivenussgeis
in a, almost all faults can be diagnosed with this set of test drR(aO)d f (ul), ao)
4nputs. Equivalently, since H. can be identified with the

" time-varying mai ( d 0-.." 'X (uQt), #z0) dr dwau)"0
..-. (1 8 --F4 (V , a0) V (u1' 9o )  which contradicts the assumption that R(aO) is nonsingular.

Clo I aakAs such, there must exist u,+ for which H, + has column rank

F,. greater than, or equal to j + 1. Repeating the argument in-
ductively until an H,, with column rank k is obtained, now

*,':. .AL completes the proof of the theorem. Note that since n 5 i at2 (uI. ao) " (u -. ati) each step, m :S k.(u'a , Coth
a-(" ' - Remark 2." Recall from our examples, that unlike the linear

and the columns of F,, may be considered to be elements of dynamical [2] and the nonlinear memoryless [ 11 cases, a sin-
Y', we require that these column vectors be linearly inde. gle-input, single-output nonlinear dynamical system can be
pendent. For ease of exposition we will refer to this condition tested with fewer test input signals than the number of pa-
as F, having column rank k. rameters. a

If Proposition I is used to test for local diagnosability, then Note finally, that the results of [1] on single fault diag-
the inputs Iui, i - 1, -.., mi that are used to establish local nosability can also be extended to the dynamical case. This is
diagnosability, will also suffice as test inputs. More generally, extremely straightforward. since most of the analysis is in the
we have the following theorem. parameter space, which is finite dimensional.

0 Theorem 3: Let w be an admissible measure for which R(a)
exists, Y'a A., and suppose that R(aO) is nonsingular at a V. CONCLUSIONS

,%" regular point a° e A4. Then 3 a sequence ui e U, i -, 1,.-.,regla porintch6 A,. he ~as qu n ce U. - Our purpose in this paper has been to indicate a mechanism
m :k f whereby the existing diagnosability theory for linear systems

Proof: If-ff (u, a0) - 0 (the zero element in Y), Yu 6 [21 and memoryless nonlinear systems [I] can be extended toU, it follows from the definition of R(a) [see (4) and (5)], that the general nonlinear dynamical case. To this end we have
the first row and the first column of R(aO) is zero. This, presented a necessary and sufficient condition for the local
however, contradicts the assumption that R(a) is nonsingular, diagnosability of nonlinear dynamical systems described by
and we may therefore assume that there existst u I e U for the explicit input-output model

which f (ut. ao) o 0. As such, there exists u Ie U such that y f(uia)

where u and y are elements of infinite dimensional Hilbert
4 a, is tbejh entry in the vetor a. spaces, while a belongs to A c IR k. On the basis of this con-

- . . . *~4*~4**~ ~ ~ **4~*b * 
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dition, we have shown that for a diagnosable system ther exists R.EFE.ENCES
a inite number of test inputs that are sufficient to diagnose (1' v Vivnatha ad A. Sangiovanj.vjcrai. 'Diasnsb. o
thesystem. nonlinear circuits and systems-Part 1: The dc cas." this Wm pp.

However, in the case of circuits and systems of any rea- $89-89.
.. able sir the eplici relationship (11) is difficult to obtain, 12) N. Sos and R. Sacks. "Faut diagnosis for lior sysms via multifrs-
and usually only the implicit equation quency meaauremmu" IEEE Tran. Ce'cu Syst.. vol. CAS-26. PP.

S(O), x(t), Y(O, u(t), a) -0 Yt > 0 (12) (31 V. Viianatban and A. Sangioani-VinmutIL "Fault dia s of
mdiw muvnmryli3 Ayfhms" in c. IEEE I. S". . Or,as SyW..

Houstoe. TX, 1980.pp. 109uz- o6.
is available [8). In the abOve equation, x(t) reprONts a set of (41 A. E. Taylor aW D. C. Lay, Iarodui to Fuando AWyiW. 2nd
internalvariablesandV 0,x(t)a iR,y) Rq, and (t) e. Now York W .1980.
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- where, now, x, jr, and a ar elements of infinite dimensional
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I. INTRODUCTION , I

" CqiCONCEPTUALLY, analog fault diagnosis algorithms .... ( I
* can be subdivided into three classes [4J: simulation-be-

- fore-test, simulation-after-test with a single test vector, and I
- simulation-alter-test with multiple test vectors. The former Fig. 1. Test algorithm for abstract circuit or system.

is commonly employed in digital testing and is char-
acterized by minimal on-line computational requirements. several hundred components it is reasonable to assume that

" 'Unfortunately, the high cost of analog circuit simulation at most two or three have failed simultaneously. As such,
* coupled with the large number of potential fault modes rather than solving a set of simultaneous equations in

which must be simulated in an analog circuit limits the n-space the solution to our fault diagnosis problem actually
applicability of simulation-before-test algorithms in an lies in a two- or three-dimensional submanifold which
analog test environment. As an alternative to simulation- should yield, a commensurate reduction in test point re-
before-test, a number of researchers have proposed simula- quirements. Unfortunately, even though we may assume
* tion-after-test algorithms, in which the internal system that at most two or three components have failed we do

0 variables or component parameters are computed from the not know which two or three, and as such, some type of
-test data via a "nonlinear equation solver-like" algorithm. search is still required. Fortunately, with the aid of an
Indeed, in the case where sufficiently many test points are appropriate decision algorithm the required search can be

.available only a single test vector is required and the fault implemented quite simply.
diagnosis problem reduces to the solution of a linear Although the resultant algorithm represents a divergence
equation 112 [15]. Except for the large number of test from previous work by the authors and the established

* points required, this approach is ideally suited to the literature [4] we believe that it meets all of the requirements
analog fault diagnosis problem and, as such, a considerable for a viable analog fault diagnosis algorithm as outlined by
research effort has been directed towards the problem of Plice [] and in II. In particular the algorithm:
reducing its test point requirements [41, [10], [131, [141, [16]. i) is applicable to both linear and nonlinear systems
One such approach uses multiple test vectors to increase modeled in either the time or frequency domain,
the number of equations obtained from a given set of test ii) can be used to locate multiple hard or soft faults,
points [3]. [7). Unfortunately, this is achieved at the cost of iii) and is designed to locate failures in "replaceable
greatly complicating the set of simultaneous equations modules" such as an IC chip, PC board, or subsystem
which must be solved and, as such, the applicability of the rather than in discrete components.
approach is limited. Moreover, this is achieved at an acceptable computational

The purpose of the present paper is to describe an cost and with minimal test point requirements.
alternative simulation-after-test algorithm in which a bound Consider the circuit or system which is illustrated ab-
on the maximum number of simultaneous failures is used stractly in Fig. 1. Here, the individual chips. discrete coin-
to reduce the test point requirements while still retaining ponents or subsystems are denoted by circles indexed from
the computational simplicity inherent in a single test vector a to n. These components are subdivided into two groups.
algorithm. Indeed, even though a given circuit mn'v contain at each step of the test algorithm. as indicated by the

dashed lines in Fig. 1. At each step we assume that one
group; say. d through n; is composed of good components

Manuscript received March 16.1951; reviseo juo 3. lV,, and Novem. and we use the known characteristics of these components
ber I5. 191. This work was supported in p- oy the Joint Strvices
Electronic Propam of Texas Technological University under ONR Con- together with the test data to determine whether or not the
tra t 76-C-I 136.

The authors are with the Department of Electrical Engineering. Texas remaining components a, b. and c in this case: are good.
Technologcal University. Lubbock. TX 79409. Of course, if components d through n are actually good
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•,her. te resuluut test results for components a. b, and c model for the circuit or system under test [3. In the
will be reliable. On the other hand. if any one of the nonlinear case the unit under test is represented by a set of
components d through n is faulty the test data on a. b. and decoupled state models characterizing it! components
c will be unreliable. As such. we repeat the process at the and/or subsystems together with an algebraic connection
nex" step of the test algorithm with a different subdivision equation as follows:
of components. For instance. we may assume that a through f = (x,, a,)

-d and h through n are gooe and use their characteristics to
* test components, ,. and g. Finally, after a number of b, g,(x,, a,), x,(0)=0, i-l2.--,n (2.1)

such repetitions the test results obtained at the various and
steps are analyzed to determine the faulty components.

Of course, the numbe of cmpoents which maybe aL 2 b+Lu (2.2)
tested at any one step is dependent on the number of test y = L21b + L2u. (2.3)
points available while the number of step required is Here, a =€l(a) is the column vecor composed of the
determined by the number of components which may be

. tested at any one step and the bound on the maximum component inpw variables, b = col(b,) is the column vector

number of simultaneous failures. As such. the pced- - omposed of component outpu variables, x, = cot(x;,) is the

yields a natural set of tradeoffs between the numbers of column vector composed of the component stae variables, u

- test points, simultaneous failures, and steps required by the is the vector of exwrnal tat Wu applied to the system

algorithm. Indeed, since the compuational cost associated and y is the vector of system responses mearured at the

with each step of the algorithm is essentially the ost of a vano tes poinu. Although the component connection

single system simulation the latter parameter is a natral model is not universal it is quite general and subsumes
measure of computational C most of the classical topological connection models com-

It the following section we describe the simulation model monly used in circuit and system theory [3]. Moreover, its

used to test one set of components under the assumption inherently decoupled nature is ideally suited to the test
hat the remaini componens are good. The model problem wherein we desire to distinguish between the

chrateisic ohe theain individual syste comonets Ahl-dei
formulated in both the linear and nonlinear cases and can characteristics of the individul system components. Al-

be used as readily to test IC chips and subsystems as tLC eompont and/or disrete semicoc tor devices.

individual components. Moreover, the requirement that an L p onnt" o a retendto eves.

appropriate matrix be invertible determian the maximum in practice the "components" are taken to be the "r

-number of components which can be simultaneously tested placeable module" within the circuit or system, under test;

from a given set of test points as well as the allowable say. an IC or a "throw-away" circuit board.
compnen sudivsios. n Sctio II tw deisin &W -At each step of the test algorithm we subdivide thecomponent subdivisions. In Section III two decision algo components" into two groups denoted by "Id and "2"

rithme for analyzing the resultant test data are described. withpthecomponnts io IP assumed be goo and
Indeedwith the components in group "" assumed to be good and

identical the e i theory dvelpedhor not used together with the known values of u and y to compute

ital system testing over the past decade(IL pe, [9). In the component input and output variables, a, and b,, for

context of our application we give an eact decision algo- the components in group "2". Although computationally

rithm for the case of a single failure together with an we prefer to work with the decoupled component equations

analysis of the possible tradeoffs between test points and for notational brevity we combine the equations for the

algorithm steps (read computer costs). Although an exa component in each group into a single equation

decision algorithm for the multifailure case has yet to be 1 =f'(x', a)
developed an heuristic algorithm which is applicable to b'=g'(.'), .'(o)= (2.4)
both the single and multifailure case is presented. The 'x a X'0 0(24

. algorithm, which is based on an inhicently analog heuristic and
6], to the effect that two analog errors will never cancel, i =/f(x2,a)
has proven to be highly reliable while simultaneously re-
ducing the number of steps required from that of the exact b = g:(x 2 , a), x(0) = 0. (2.5)
(single failure) algorithm. Finally, Section IV is devoted to Here, x' . a' , and b' are the vectors of group -I" compo-
a number of examples including three nonlinear circuits nent state variables, inputs. ajd outputs; and similarly for
and five linear circuits with as many as 200 components. x2 . a2, and b. To retain notational compatibility with (2.4)
Using these eight circuits some 400-plus simulations of the and (2.5) we reorder and partition the connection equa-algorithm were carried out for both the single and multiple tions of (2.2) and (2.3) to be conformable with (2.4) and
failure cas with both hard and soft faults. (2.5) as follows:

II. TmE. SI ULATION MODEL a' = L ,b' - Lb + L',u (2.6)

- Although our test algorithm can be formulated in terms a = Lb'L.', : - L~ b ' + L -^-b : L 2,u (2 .7 )
of any of the standard system models for the purpose of

this exposition we will assume a component connection y -L',bI - L'b-' Lu. (.8) 4
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Given (2.4)-(2.8) our goal is to compute the group "2" test algonithms are tabulated as follows:
,. component variables, a and b2, given the test input. u. the
, measured tes: responses, y, and ai, assumption to the effect 1"'l a b c ... k

that the group "I - components are not faulty. To this end 0 x
we assume that L22 admits a left inverse, (Lz2IL. which, in I y
turn. determines the allowable component subdivisions.
Under this assumption one may then formulate a compo-

,.--nent connection model for a "pseudo circuit " composed of 0
the group " I" components with external input vector uP =

. col(u, y) and external output vector yP = col (a 2 .b2 ) in the Here a, b, c,--., k denote the group I components for a
form given step of the test algorithm x, y, .. ,z denote the

corresponding group "2" components while the binary
1' =f'(x',a1) annotation associated with the group "2" components

Ib =g'(x' , al), x'(0) = 0 (2.9) indicates whether this step of the test algorithm indicated
that they were good (0) or bad (1). Although this tabular

al = K11b' + K 21uP (2.10) notation is somewhat cumbersome we will eventually gen-
yP = Kb'+ K -u. (2.11) crate a binary array indexed by the group "1" and group

b"2" components in the process of our decision algorithm in

- Indeed, some algebraic manipulation of (2.6)-(2.8) to. which case the tabular notation proves to be convenient.
-- gether with the assumption that [L21 ]-,L exists will yield For linear systems one may formulate an identical algo-

2 rithm in which the component equations (2.1) are modeled
Kit = IlL 12 1 211 (2.12) in the frequency domain via

K12 = [ L12 - L 12 [L - L L12[L2] L] b,=Zia,, i=l,2...,n (2.16)
11 (2.13) where we have suppressed the s-variable for notational

(21)brevity. Then upon subdividing the components into two

21 - L1[L 1] -LLI groups chacacterized by the equalities b' = Za' and bI= Za'L 1 (2.14 1and solving the resultant equations under the assumptionK2 L, , - -2.4 that [L2,] - L exists one obtains an equation in the form
-- -LI and

2 y' = Mu'. Specifically,
and a2 = MI u+ M 2y (2.17)

-2 It 2 21 [L,]LL 2 2 1LjL J hr = M21u + Mny (.8;: ~ ~ L2 ,;] where

(2.15) M, = 2L - L22[L 2]LL'21

Siice, in our test problem both u and y are known, the
above equations can be solved via any standard circuit I -Z1 [L1,- L1,2 ] L2.
analysis code to compute yP = (a2 , b2 ). Now, under our
assumption that the group "I" components are not faulty Z L [41 - LL 2 + r2121 2j'LL )+[L -L22 L _L22
. P = (a, bt) represents the inputs and outputs which actu-2
ally appeared at the terminals of the group "2" compo- (2.19)
nents during the test. As such, we may determine which of ([ - ,- l
the group "2" components are faulty by solving (2.5) with M12 =  - L2,[L 2] L21
input a2 and checking to determine whether or not the
resultant output coincides with b2 . Of course, since our •

* 'assumption to the effect that the group "I" components
are not faulty may not be valid the results of this test are not .ZIFLI2FL2j-L]) -L' L l(.0[L[L [L=L, (220
reliable. As such, we repeat the process a number of times hI. J + L1[L,] 2

with different choices for the subdivision- of the compo- I
* nents into group "I" and group "2". Here, the only M 2 1 - [Li 1]21-LL,,L',{[L .]LL:,

constraint on the choice of subdivisions is the requirement
* that IL 2 J exist while the number of combinations em- ZILi-L12[2]- 2] L]-L2 (2.21)1(2.211
ployed is limited only by the cost of the required simu-
lations. The results of the several steps in the test algorithm M - ' ( La 1L', (I-Z 1 1 1 1 - ,1'[21L L12
are then analyzed via the techniques described in the j 2

folloving section to determine those components which are
actually faulty. To this end the results of each step of the "l- 112
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Although these expressions appear to be foreboding they in fact. good. Indeed. if a group two component were
.ay ail be computed with the aid of only a single matrix actually faulty then our test resufts are incorrect, which

inversion. Moreover. since the M,, are independent of the could only happen if one of the group "I' components was
test data and computed in terms of the nominal values of faulty. As .uch. Lhe system would have two faulty compo-
tae oup "l' components they may be computed off-line nents contradicting our assumption to the effect that at
and stcred in a data base to be retreived at the time a test most one component is faulty.
.- 1. conducted. Furthermore. since only a single test vector is Now. consider the case where the results from a given

-required, single frequency testing can be employed in which step of the test algorithm indicate that exactly one group
. case the M,, need only be computed at a single frequency. "2" component is faulty: say, x

As such, the only on-line computation required for the
fault diagnosis of a linear system is the matrix-vector a b C .

* multiplication indicated by (2.17) and (2.18) together with I x
the computation of Z2a2. 0 y

Unlike the linear case, if one is working with a nonlinear
circuit or system, the simulations required to compute a2  o
and b2 require a prori knowledge of y and u and thus must
be carried out on-line. In practice, however, relatively few In this case the same argument we used above will guaran-
time steps are required by these simulations, thereby mini. tee that the components which test good; say, y through :;

- n'izing their running time. Moreover, all simulations arc are, in fact. good. On the other hand we have no informa-
, -. carried out with nominal components allowing one to use tion about x. It may be faulty or, alternatively, the test

standard computer-aided design circuit models.- Indeed, result may be due to a faulty group "I" component.
since the group "2" component models are only invoked at Finally, consider the case where two or more group "2"t the final step of the analysis one can avoid simulating components test bad in a given step as indicated in the
- troublesome" components by always including them in following table:
group -2" though this usually means that additional test "2" 1" a b c... k
points will be required. As such, one can avoid simulating
-fuzzy" components which do not admit a viable simu- I - X
lation model and/or nonlinear components. Indeed. if I y
sufficiently many test points are available to permit all
nonlinear components to be included in group "2" a linear 0 z

; .- -simulation model such as that of (2.17) and (2.18) may be
employed even for a nonlinear system. Since, under our assumption of a single failure., it is impos-

sible for two or more group "2" components to be faulty,
* III. D ScISION ALcoRrrTm this test result implies that at least one of the group "I'

Since the results of the tests described in the preceding components is bad. On the other hand, since we have

section are dependent on our assumption that the group assumed that there is at most one faulty component the
"I" components are not faulty they are not immediately faulty group "I" component is the only faulty component
applicable. Following the philosophy initiated by Pre- and, as such, the group "2" components arc; all good.
parata. Metze, and Chein [9] in their study of selftesting Consistent with the above, at each step of the test

4, computer networks, however, if one assumes a bound on algorithm either all or all but one of the group "I"
the maximum number of faulty components it is possible components are found to be good. As such. if we choose
to determine the actual fault(s) from an analysis of the test our subdivisions so that the components which are found
results obtained at the various steps in the algorithm. To to be good at one step of the algorithm are included in
this end we will give a complete analysis of the theory group "I" in all succeeding steps we will eventually arrive
required to locate a single fault together with an heuristic at a group "I", all of whose components are known to be
which is applicable to the multiple fault case. good. As such, the test results obtained at that step will bewLet us assume that at most one circuit component is reliable, thereby allowing us to accurately determine the
faulty and that the test results obtained from a given step faulty components in group "2". Although the number of

of the algorithm indicate that all group "2" components components in group "I" and group "2" may vary from
are good as indicated in the following table, step to step (especially if we work with multivariate compo-

nents) if we assume that group "1" contains n-m compo-
"2""" a b c . k nents and group "2" contins "m" components at each

0 x step of the algorithm then the process will terminate in
0 Y approximately n/pr steps. Since the computational cost of
* •the algorithm is proportional to the number of steps (essen-

0 "ially the cost of one simulation per step) while m is
determined by the number of allowable test points the

In this case we claim that the group "2" components are. ratio n/m represents a natural measure of the possible
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tradeoffs between test point and computer requirements not affect the test results for component i. Now, since
when employing the algorithm in a single faul: made. component x has been found to be good in tWs test our

Unlike the single fault case, at the time of this writing, heunistic implies that those group "I" components which
we do not yet have an exact decision algorithm for the are coupled to x in this test are also good. Similarly, since :
multiple fault case. Following Liu. however, the problem is good the heuristic implies that b and c are also good.

* can be greatly simplified if one adopts an "analog heuris- Thus with a single test, we have verified that x, z, a. b, c,
* tic" to the effect that two independent analog failures will and k are all good.

ne' er cancel [61. Needless to say, this is an inherently Since in any practical circuit the coupling table is corn-
analog heuristic since two binary failures have a fifty- fifty posed mostly of I's it has been our experience that rela-
chance of cancelling one another. In the analog case, tively few steps of the algorithm will yield a complete
however, two independent failures are highly unlikely to diagnosis. To implement the heuristic, however, one must

* cancel one and another (as long as one works with reasona- assume that the maximum number of faulty components is
bly small tolerances). Indeed, in the totality of some 72 strictly less than the number of group two components. If
simulations of the algorithm using the heuristic which we not, the test results at each step may show that all group

* have run on three different circuits it has never failed. -2" components are faulty. in which case no reliable test
:Recall from our discussion of the single fault case that information is obtained. Moreover, the degree to which the

whenever a test result indicates that a component is good number of group -"'" components exceeds the maximum
* then it is, in fact, good. Although this is not rigorously true number of faulty components determines the number of

-in the multiple failure case it is true under the assumption algorithm steps which will be required to fully diagnose a
-of our heuristic. For instance, consider the test results circuit.
indicated in the following table in which x is found to be ~EIWPE
good.

I2,.1 a b c . k To illustrate the exact decision algorithm for the single
0 _______________ fault case consider a system composed of eight compo-

0 X nents: a. b, - , h; in which any five may test the remaining

Y 
three. Initially, we let a through e represent the group "I"
components And f, g, and h represent the group "2'
components and assume that the test results for this first

* step are as indicated in the following table:
Now, it x is actually faulty there must be a faulty group
-I*' component whose effect is to cancel the error in x as '621 -- .. " a b c d e
observed during this step of the test algorithm. This is,0f
however, forbidden by our heuristic and, as such, we 0g
conclude that x is actually good.I

Interestingly, our heuristic can be carried a step further I
than indicated above since, under our heuristic, a bad Emlynouexcagrihfrtesnlealtaete

* group "I" component would normally yield erroneous test aep loyindreateagrthso thesinglent f ault ae thed
results. An exception would, however, occur if some of the above abl idct esv thamt om pt fo nd saegood
group "I"s components are totally decoupled from some of and, as suchalwermove themiintgrop""frtescn
the group '2" comiponents. As such, if pnior to our test westpothalrimobing

* generate a coupling table (by simulation or a sensitivity '621%....,. "1" .f g a b c
analysis) which indicates whether or not a faulty group "I" ____________________

component will effect the test results on a group "2"0'
component. our heuristic may be used to verify that certain Ie
group "I" components are good whenever a good group I h
"2- component is located. Consider for example the fol-

* lowing ,able: Since this test indicates that two group "2" components
are bad which condradicts our single fault assumption the

"2" "" a b c ... k faulty component must be in group "I" implying that d. e,

0 x 1 01- 1 and/h are all good. We therefore move these components
IyI 1 0 0 into group "I" and implement the final step of our algo-

rithm in the form

0 :0 1 1 0 2" "h e d f g

in which a "I" in the i-j position indicates that the test 0 a
results for component i are affected by component] while b
a "0" in the i-j position indicates that componentj does 0 C
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Since all group "I" components are known to be good thisDV7 .r,

final test is reliable and indicative of the fact that b is the
faulty component.

Note. that the requirement that L2I be left invertible
may make it impossible to use some component subdivi-
sions in which case an alternative sequence of steps may be
required in the above process. For instance, if h, e, d, f, (C)

*and S s notan alowabW subdivision thelIantstep tothe
above proces mightn be replaced by r

0

0 Al

indicating that c and h are od. Now, a final step in which ,

c. e, d. d, and g make up group "I" will be reliable as Fig. 2. NGUHMW Ci.mna an ,,kh the Fp aiinitm wo to"

indicated below: " m w daw

-, '2" "1" c e d f -g which gives us no information in the multiple failure case
0 a As such, we try another allowable combination obtaining
I b the following table:

0 h f S a d e.2"r....%~1 ., I d
'I b 0 11 10Now, consider the same sinl fault ezample in which our I 1101boveuistic algorithm is applied using the coupling table .0 It ' I I 1 0 1

indicated below: I C 1 0 I 1 1 0

"2" . "I" a b c d e indicating that A,, g, a. and earegood. Coupled with our

f 1 00 1 0 previous knowledge that d is good this implies that all

0 J 00oup "I" mponents are good and hece this last step in
I 0 I 00 1 0 1our algorithm reliably indicates that b and c are the faulty
1 h I1I 0 !components.

To obtain an estimate of the actual performance of the
According to our heudsticf and g are good and, mo , algorithm it was applied to 8 different ciicwts using simu-
eerything in group "I" which is coupled to eitherfor g is lated test data [17. These included the 5, 6, and 14
good. As such, we conclude from this rt step that f, S, a, component nonlinear circuits of Fig. 2(a) -(c), for which
c, d, and e are all pod. Thus taking group "I" to be e, d,f, the fel jti-,n impkewntatie of the aluedin W
g. and a in the net step will yield a reliable test for b, d, cOried owe and the linear 12, 22, 50, 100, and 200 compo-
and h as above. nent circuits of Fig. 3(a)-(€) on which a frequency-domain

Finally, onsider the case where at most two failures am simulation was carried out. In addition multiple failure
assumed with the first step in our test algorithm yielding: examples were nt on the 12 and 2 component circuits

' "b and perturbations on the good component values were
"2" "1" a b c d I introduced into one run of the 12 component circuit to test
0 f 1 0 0 1 1 its robustness. For the 5 and 6 component nonlinear cir-
1 g 0 0 1 1 0 cults and the 12 component linear circuit the algorithm was
I h I I 1 0 1 implemented on a desk lop caluator while TI 990/20

16-bit mini and a VAX 11/780 32-bit midi were used for
Consistent with our heuristicf, a, d, and e are found to be the larger circuits. The results of a total of 445 simulations
good in this step. Incorporating these components into of the algorithm are summarized in Table I. In all 445 runs
group "I" for the following step we obtain: the algorithm failed to give the correct answer on only four

f d occasions. Indeed, this problem was encountered only with

! I b 0 ! 1 1 0 Acttl~yone iw eduor "h tat least one of the roup "I" -o po P-i
•I 1 0 1 "1 0 is bad sine &L three grou -2"  ts canm be bad "~a ourtwI fault "glumption. This, o tn. 41mpft"Othat at most an or the gru -rh I I 1 0 1 om po m isis ad .

, -,b". . ""202



WV et GL: ANALOG FAULT DIAONOSIS

V. CONCLUSIONS

_Although the proposed algorithm is still new it appears
to meet most of the criteria formulated by Plice [81 as well

II" as those of [I I. Although the on-line computational require-

b) menu for the algorithm do not compare with a simulation-
before-test algorithm they can be kept within reasonal

.' bounds. Indeed, unlike most simulation-after-test algo-
rithnls no iterative on-line computation is required. More-

over, one can limit the on-line computation by restricting
the number of algorithm steps (at the price of increasing

*(c) the ambiguity in the resultant diagnosis). Furthermore, in
77 _the linear case and/or in the case where there are suffi-

ciently many test points available to permit all nonlinear
-o and fuzzy components to be included in group "2" the

.6111 , a T major pan of the computation required by the algorithm
FW 3. Limaar rcuisrn onwhich hpopoed algth was md using can be done off-line.

siulated i s&, In pneral the proposed algorithm permits one to trade-
off between on-line computational requirements and test
poinu. Indeed, as indicated in Table I, one can reduce the

TABLE I - rest point requrements to quite reasonable levels though
A01 , ,1 , ,,,.m ,, this is usually achieved at the cost of increasing the number

3 0 as 3 9 , of steps in the algorithm (and hence its on-line computa-
* " " " 11] tional requirements). In particular, our simulations indicate

9-- that the algorithm comes cose to achievn the ar test
,,- ,point am set in [

. ,. " "~ ,. ' tWith respect to the remaindr of the csiteria specified in
I ,I the algorithm -looks good." In particuln, all sinula-

I.. , . , S O.W, ,tios are carried out using oe nal cpop to moei, it

mon .. 2 . can test oand nonear modl of arbitra s e, and
a g a a s amenable to in situ testing and parale proces teab -

L*m ,ft Se E I I is

,..us. 6.9, - ., niques (since several stes of the algorithm can be car ied
6 3 "Wout simultaneously).

• - - -oAt the present time the major open question with respect
to the performnce of the algorithm. is its robstnss. In-

on, 0 ~0- PI. 53 S deed, there is nothing in the algorithm to make it inher-
_-.ently robust, though our initial test for robustness indi-

pop 1.00 do ft cated by the asterisk in Table I proved to be favorable.
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FEEDBACK SYSTEM DESIGN:

The Single-Variate Case - Part I
R. Sarks', I. Murray', 0. Chua, C. KarmokoliasJ,
and A. lye,

- Abstract. A recatly developed agebraic po@ac to the feedback system desip

problem is reviewed via the derivation of the theory in the single-variate case. This
allows the simple alebraic nature of the theory to be brought to the fore while

* simulan ouslY minimizing the complexities of the pruentation. Rather than simpy
living a Ane solution to the pscribed desi probim we endeavor to give a com-
plete parameeiaio of the set of compensators which meet specificatiks.
Althoush this might at rsae to complicua our theory it. a fact. ope- the way
for a Mquential approach to the design 4oblem in which am parfimeteia the
subset of those empensators which mest the macoad specllcutio..e: Specific
problem investigated include feedback system stabaton, the tracking and dier-

Sben rejecton prbbm robust dM transfer functin desig, pole pacmunt.
simultaneous mablflzdon, and stable stablution.

".' 1. iut e u i o

In 1976 Youla, Bongiorno, and Jabr published two, now classical, papers
.• (23.241 in which a complete parameterization of the set of stabilizing com-

pensators for a multivariate feedback system *was obtained. In the ensuing
years this work, which is often termed the YBJ theory, has led to the
development of an entirely new approach to the feedback s) em design
problem. Indeed, their stabilization theory has been extended to include:

(i) the tracking and disturbance rejection problem
(ii) robust design algorithms

(iii) design with a proper or stable compensator
' (iv) transfer function design

'Received Septenber 16. 1911; revised November 10. 1981. This research was supported by
the Joint Services Electronics Progran at Texas Tech University under ONR Contract
76-C- 1136.

* 1Department of Electrical Ensineering, Texas Tech University, Lubbock. Texas
* 79409. USA.2Presently with Honeywell, Inc., Phoenix. Arhoa.

3Presently with Kearfot Division, Siger. Inc., Little Fails, New Jersey.
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(v) pole picement
(vi) simultaneous staibilin, lion

Moreover, much of the work has been extended to the case of general linear
systems; dimibuted, time-vai. multidimensional, etc.; by formulain
it in an abstract ring theortic 18,101 or algebro-gwmetrlc setting 117). Un-
fortunaf, these -nalsiom have ben achieved at the cost of Wails-
in the compxity of the theory and, as such, the smpe algebraic daracer
of the work has bean obscud.

The pups of the prem papar is to survey this literature in such a way
-as to Ilutrt the simplicity of the theor. To this end the preetationt is

resrictud to the ASiale-varite case wherina a smple algebraic theory is
posible. Indeed, by so g we are able to give simple single-variate
algebraic derivations for several results whose true character has hitherto
beem obscured by the abstract tins t or multivariable theory.

The ky to our theory is a three step design philosophy
* (i) stablization

(ii) achievement of design constraints
(i') opimization of system performance

* First and foremost, a feedback system must be s=*bl aAd, as such, the first
stp in t e design proces is the-pwun ri, f.U sbtzg compn-
.w, s for the St plat. Although it migh suffice t6 specify a single
stabilWaxig compensator if our goal was simply to design a stable systm,. in
practice tabailnmlo is only the ir step of the dgn prmcu As such, we
must charactelas all stabilizig compensators If we are to choose among the
stabilm" compeamuo to find one which also achieves the desn con-
maims md/or optimizes system performance. A compmte peumseteria-
in of the set of stabilizing compensators for the given plant is thus ob-

tained as a first map in the design poce . Inded, the Iml terlzation is
cbosm in such a way that the varios feedback system gais are linear
(affine) in the resultant design perammet, thereby setting the stage for the
choice of a design perameter which also achieves the dastn conhtraint
and/or optimiemrsow memwe of systm pe formence.

Once the stabilizing compensators have been characterixed, step two of
the design proem is to choose a subset of the stabiizing compensators

*which also achieve the prescibed dean conistran tracking and distur-
bance rejection, transfer function specification, robustnes, etc. Finally, if
any remaining design latitude exists after the design emstrains have been
met it may be used to optimize some measure of system performance; sen-

* sitvity, energy consumption, etc.
The paper is divided into two parts dealing with the classical asymptotic

*dosn problemr stabilization, tracking, and disturbance rejection; and a
survey of modern frequency domain design; robust design, pole placement,

-simultaneous design, respectively. In the remainder of this introduction the

4 208
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fractional representation theory for a single-variate system is developed.
The key to this theory lies with the representation of a rational function as a
ratio of stable rational functions rather than as a ratio of polynomials. Such
a formulation opens the door to the desired generalization, wherein stability
is well defined even though no analog of a polynomial exists. Moreovet, it
yields what we believe to be a more natural concept of coprimeness in which
only cancellations between (dosed) right half-plane zeros are forbidden. In-
deed, the (strict) left half-plane plays only a minimal role in the theory.

In Section 2 a derivation of the YBJ stabilization theory is formulated in
terms of a stable coprime fractional representation. Although this deriva-

* tion has appeared before 14,B], even in the single-variate case, a complete
proof is given because of its fundamental nature to the remainder of the
work. Indeed, the proof technique introduced here is repeated, in one form
or another, throughout the paper.

Sections 3-5 are devoted to the tracking and disturbance rejection pro-
blems 14). Unlike the stabilization problem a solution to these problems

0 may fail to exist. Necessary and sufficient conditions for the existence of a
solution are, however, given in the form of appropriate coprimeness criteria
and a complete parameterization of the required set of.compensators is ob-
tained when these criteria are satisfied.

Part I1 of the paper begins with Section 6 in which the problem of robust
design is taken up. Unlike the stabilization problem for which every solu-
tion is robust a solution to the tracking and/or disturbance rejection prob-
lem may fail to be robust. Surprisingly, however, whenever these problems
are solvable they are robustly solvable. As such, beginning with the same
coprimeness criteria used in the non-robust case we give an explicit
parameterization for the set of compensators which robustly solve the

* tracking and disturbance rejection problems. This result, however, only ap-
plies to our single-variate case. In the general multivariate case a robust
solution may fail to exist even though a non-robust solution exists (I 1J.

In Section 7 the problem of designing a compensator which simul-
taneously stabilizes a feedback system and realizes a prescribed input-
output feedback system pin is investigated. The required existence criteria

* * for this transfer function design problem are formulated in terms of a
divisability condition in the ring of stable transfer functions. This is followed in
Section 8 by an investigation of the pole placement problem in which one
desires to construct a compensator which will simultaneously stabilize a
system and place the polep of its input-output gain at prescribed points in
the left half-plane. Interestingly, the extent to which this end can be achieved is

* determined precisely by the "degree" to which the plant fails to be
miniphase.

In Section 9 the problem of designing a compensator which simul-
taneously stabilizes two distinct plants is solved. Although this two plant
problem is a very special case of the general simultaneous design problem it

* 209
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is the one example of the problem for which a definitive frequency domain
design criterion exists [7] and is thus indicative of the direction of future
research in this area. Moreover, the problem of stabilizing a feedback
system with a stabk comupmwor (25 1 proves to be a special case of this two
plant problem which is developed in Section 10.

Section II is devoted to a short discussion of the Nopf/m/ir/on pro bm
.aociated with step three of our design process. Since the specific optimiza-

don one might choose to undertake is dependent on the physical system
under study and its avolication the development in this section concentrates
on the interface betweus our theory and the optimization process, without
going into specifc.

Finally, Section 12, is devoted to an htorical oyrview of the theory and
a discussion of the various gwelimios and etxreason which thus far

., have been formulated.
Our system will be described b; a rational function

F(s) M P(S)(1)
q(s)

'_,V Such a system is said to be stble if its poles lie in the (strict) left half-plane.
Since the point at infinity is taken to lie on the imaginary axis this implies
that r(s) is stable if and only if it is a proper ratinal function and q(s) is a
(srictly) Hurwitz polynomial.

Afrctional reprewsuas for r(s) is a factorization of r(s) in the form

r(s) -R,,($) (.4
wher both n,(s) and d,(s) are stable and d,(s) 0 O. If one is given a

. polynomfil fraction l repemmaion for P(s) such as in equation 1.1 then
one can take

d and

",(s) q(s) (1.4)

where rn(s) is any Hurwi polynomial such that the order of r(s) eqls
the order of r(s) verifying the existence of the required fractional represen-
tation (11].

We say that the fractional representation r(s) - n,(s) /d,(s) is coprime
if there exist stable rational functions, u,(s) and v,(s), such that

u,(s)n,(s) + u,(s)d,(s) - 1 (.5)
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Recall that for polynomials 1.5 is equivalent to the requirement that n,(s)
and d,() do not have any common zeros [2]. In our case, however, where
we are dealing with stable rational functions, Equation 1.5 imples that n,(s)
and d,(s) have no common (closed) right half-plane zeros and conversely
(4,11]. Although this represents a departure from classical control theory

only right half-plane zeros cause instability and, as such, it is appropriate
that only right half-plane pole zero cancellations be forbidden.

Unlike the classical polynomial fractional representation theory wherein
the units are the constant functions in our theory the units are the miniphase
rational functions which are stable and admit a stable inverse. That is, if

S. r(s) = p(s) Iq(s) then p(s) and q(s) are both Hurwitz polynomials of the
S - same order. As such, the classical theorems for polynomial fractional

representations may be reformulatedin our setting with the units taken to
* be miniphase rational functions as follows.

1. Property. Let r(s) = n,(s) Id,(s) be coprime fractional representation

* for r(s) and assume that 'r,(s) and d,(s) admit a common divisor, k(s).
such that

d,(s) - y,(s)k(s)

and

_ • n,(s) - x,(s)k(s)

where y,(s), x,(s) and k(s) are stable. Then k(s) is miniphase. That is, the
only common divisor of a coprime fractional representation is a unit.

Proof. Sinced,(s) - y,(s)k(s) andn,(s) - x,(s)k(s) are oprime there
exist stable u,(s) and V,(s) such that

SI- u,(s)n,(s) + v,(s)d,(s) - [u()r(s) + v,(s)yJs)Jk(s) (1.6)

showing that [u,(s)x,(s) + v,(s)y,(s) I is a stable inverse for k(s) and
hence verifying that k(s) is miniphase.

2. Property. Let r(s) = n(s) d(s) be a fractional representation for r(s)
* , and let r(s) = x,(s) /y,(s) be a coprime fractional representation for r(s).

Then there exists a stable k(s) such that

nr(s) - x,(s)k(s)

and

dr(s) - y,(s)k(s)

[ •Proof. Given the two fractional representations let k(s) = d,(s) /y,(s).
Then clearly d,(s) = y,(s)k(s) while

(S) n FS)d, (s) (s)d (s) (s d,(s) = x,(s)k(s) (1.7). . ns) = r~s )  r~sr~x}

* 2"-
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showing that k(s) is a common factor of n, (s) and d,(s). It thus remains to

verify that k(s) is stable. To this end recall that since x,(s),'y,(s) is coprime
there exists stable u,(s) and u,(s) such that

[aa,(s)X,AS) +i V.(S)Y,(S)) U (S)

hence

k(s) -d,(s)_ +u (s)x,(s) + v,(s)y s) 1 (£Qi it~) ,,Y,(s) TM Yis)

- Sis) + v,(s)d,(s) -, u,(s)r(s)d,(s) + v,(s)d,(s) (1.9)

-= u(s)n,(s)d,() + v,(s)d,(s) - us),(s) + u,(s)d,(s)
d,(s)

showing that k(s) is stable since we have expressed it as a sum of products
of stable rational functions.

Note that since a coprime fractional representation always exists [IlI for
r(s) Property 2 implies that any pair of stable rational functions, x,(s) and
y,(s), can be expressed in the form x,(s) a n,(s)kU) and y,(s) -
d,(s)k(s) where n,(j) and d,(s) are coprime stable rational functions and
k(s) is stable. As such, k(s) represents a grelasr common divisor for
x,(s) and y,(s) which is unique up to a miniphase factor via Property I.

3. Property. Let r(s) a n, (s) /d,(s) be a coprime fractional representa-
ti- don for r(s). Then r(s) isuable ( and only if d,(j) is minphas.

Proof. If d,(s) is miniphase then l/d,(s) is stable and hence r(s), being
the product of two stable functions is stable. Conversely, :f r(s) is stable
then we may express n,(s) and d,(s) in the form

n(s) - r(S)d(s) (1.10)

and

d,(s) = I d,(s) (1.11)
showing that d,(s) is a common factor of the coprime rational functions
n,(s) and d,(s). As such Property I implies that d,(s) is miniphase as was
to be shown.

4. Example. Consider the rational function

liI

r(Sr

,- L (:s+2) J
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Now, n,(s) has zeros at s = - I and s = c while d,(s) has a zero at s = 2.
As such, n,(s) and d,(s) have no common right half-plane zeros thus im-
plying the existence of stable rational functions u,(s) and v,(s) such that

S[u,(s)n,(s) + v,(s)d,(s) ] = 1. Indeed,

. [ ] r] + (s+ /3) r .(s- 2) 1
3 L(s+2)2j [ (s+2) ]L(s+2)

. -. (1.13)

= u,(s)n,(s) + v,(s)d('S) I

pJ Note that unlike the case of a polynomial fractional representation the ex-
istence of common (strict) left half-piane zeros does not preclude coprime-
ness. Indeed, an alternative coprime fictional representation for the above
rational function takes the form

* r (S+ 1)21

r(s) s= r_+1) L (s+2)3J n;(s) (1.14)
I.) r" (s-2)( + D d,(s)

(s+2)2 -

where n,(s) and d;(s) have a common zero at s = - 1. There are, however,
still coprime since

16(s+2) 1 + 2 1 + r (s 2/3) (i s-2)(s+ 1
- L 3(s+l) L (s+2)3  L (s+1) (s+2)2

- u;(s)N;(s) + v;(s)d:(s) =

2. Stabilization

The basic feedback system with which we deal is shown in Figure 1.

• 

+1

Figure 1. Basic feedback system.

For this system the usual algebraic manipulations [8] will yield the feed-
io back system gains

-, Is) ht1I(S ,02() A (S)(21

2(S) (Lh )(s) h"" (s)j 2 i
where

2-1

S'

U'
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rhA~ ~~(S) s1 r____ psii '-"- I 'plSlc(s) I +plslc~s)

Ihl [h(S) h*4 2C(s) J 1+(seC(s) I +p(S)c(s) J (.2

S () r, (S) h, ) 1 U (J.
..-.-.- ) €(sh 12'~ + (s)~still 102l

W [.. -- ( 2 .3 )

where

. - LA, W h,1.(sj -/0'h ,) -h, s) I
(S), h ()-I (s) -h, M

r"(s) -p(s)(s)
I +p(s)c(s) I + PC(s)

- p(s)(s) "p(s)
I; 4-p(5)c(s) I +4p(s)c(s) j

Of course, the system is said to be stable if each of the eight feedback system
gains of equations 2.1 through 2.4 is stable. Since the inpur/output gains,
h h,,, are expressed in terms of the input/plant-input gains, h,0, via equation
2.4 this will be this case if and only if the input/plant-input gains are all
stable.

For our stabilization theory we assume that a coprime fractional
a." representation for the plant is given in the form

. d, (s)

where nW(s) and ds) are stable, d (s) is not identically zero, and there
exists stable u,(s) and vs(s) such that

u,(s)np(s) + v(sid'P(s) , 1 (2.)

In our single-variate setting every plants admits such a representation and
hence we may assume 2.S and 2.6 without loss of generality. Our goal is to
characterize the set of compensators, represented in the form

""""ncs)
C(s) - ____ (2.7)

dc(s)

where n, (s) and d. (s) are stable and de (s) is not identically zero, which
stabilize the feedback system. Of course, we would also like 2.7 to be a co-
prime fractional representation. Indeed, so as to prevent (right half-plane)

4'
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pole-zero cancellation between p (s) and c(s) we require the stronger condi-
tion that

0 p(s)c(s) - dp(s)n,(s) (2.8)

be a coprime fractional representation.
Substituting the fractional representations p(s) . nP(s) /d,(s) and

c(s) = n,(s) /dc(s) into 2.2 and 2.4 now yields

ko () 1h (s) df(~cs n(~ s1 dp(s)d(s) +np(s)nc(s) dP(s)d,(s) +nP(s)n,(s): .: =( 2 .9 )
'201h , I (s) h.I"- (S) dp(s)nc(S) ,($  )dc(s)

.- d(S)d(S)cs)+dj,(dn(s) J
and.. , d

h (S) [ d (s)n,(s) -np(s) nc(s)

,,s d(S)d(s)+np)n,(s) d,(s)dc(S) +n t$)nc(s)

{A .,.(S) hl 'r S) d n,,(s)n,(s) n,(s)dc(s) J
J P(s)d,(s) +n,(s)(s) d,(s)d,(s) +np(s)nc(s)

Since the fractional representation for p (s) c(s) given in 2.8 is coprime

there exist stable p (s) and q (s) such that

p(s) [d(s)d,(s) I + q(s) [nP(s)n,(s) - 1 (2.11)

', hence

.p(s) -q(s) I [dp(s)dc(s) ) + q(s) (d,(s)dc(s) +np(s)nc(s) I - 1 (2.12)
showing that the fractional representation for h,,, (s) given in 2.9 is co-
prime. As such, it follows from Property I that h,* (s) is stable if and only

, if the common denominator, [d,(s)d,(s) +n,,(s)n,(s) I is miniphase.
Moreover, since hkV, (s) must be stable for the feedback system to be stable
it follows that [d(s)d,(s) + n.(s)n,(s ) ] must be miniphase for the system
to be stable. Conversely, if this common denominator is miniphase the
system is clearly stable via 2.9 and 2.10. Moreover, if the common
denominator is miniphase

li e [d(S)dc(S) +n (s)n(s )  .,[dp(s)d(s )

(2.13)
+ (sds)d Cs)+n(s)nc (s)[ n,,(s)nc(s) I +

showing that the corresponding fractional representation for p(s)c(s) is
coprime. We have therefore proven the following.

215
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5. Property. Let p(s) - n,(s)lid(s) be a coprime fractional
representation for p(s) and let c(s) - n,(s)/d,(s) be a fractional
representation for c(s). Then the feedback system is stable and p(s)c(s)
. [n,(s)n,(s)]/[d(s)d,(s)I is coprime if and only if
[d,(s)d,(s) .n,(s)ys) 1 is miniphase.

Consistent with Property 5 the goal of the feedback system stabilization
problem is to characterize the compensators, c(s) - n,(s) Id,(s), such that
I d dc(ds) +n,(s)n,(s) ] is miniphase given the coprime fractional
representation

p(s) ~ (2.14)

-- where

U•,sl)x,(s) + u,(s)d, I (215)

'for some stable u,(s) and v,(S).

Smabilizatlom Theorem: For the feedback system of Figure I let the
plant have a coprime fractional representation as per equation 2.14 and
2.15. Then for any stable w($ such that w(s)n(s) + u,(s) is not iden-
tically zero the compensator

C() - w(s)d,(s) + up(s) I (S
= WlslM,(S) +v1s11)l d,(s)

stabilizes the feedback system and yields a coprime fractional representa-
. -tion on p(s)c(s) - [n,(s)n,(s)]/(d,(s)d,(s)]. Conversely, every

such stabilizing compensator is of this form for some stable w(s).

Proof. According to Property 5 it suffices to characterize the class of
*.. stable n, (s) and d,(s) such that

d,(s)d,(s) + nlsln-l$) - k(s) (2.16)

where k(s) is an arbitrary miniphase function. To this end we will attempt
to compute all possible stable solutions to equation 2.16. Multiplying equa-
tion 2.15 through by k(s) yields

klslu(s)IN(s) + k1(S)u,(s)jd,(s) = k(s) (2.17)

verifying that

• ". ni(s) = k(s)u,(s) (.111)

and

df (s) - k(s) v,(s) (2.19)

are particular solutioni to equation 2.16. On the other hand

216
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d,(s) [n,(s)r(s)1 + n,(s)[-d(s)r(s)] 0 0 (2.20)

for all stable r(s) showing that

and 
x (s) = - d, (s)r(s) 

(2.21)

d*(s) = n,(s)r(s) (L2)

- are homogeneous solutions to 2.16 for all stable r(s). It remains to show
that 2.21 and 2.22 represent all homogenedus solutions. To this end let

*_ n(s) and c(s) represent arbitrary stable homogeneous solutions to 2.16.
That is

d,(sLd(s) + ,,(s)*(s) - 0 (2.23)

in which case we will show that they take the form of 2.21 and 2.22. As a can-

Sdidate for r(s) let us take r(s) -1:(s) / d,(s) in which case we have

-(s) -d,(s)r(s) (2.2)

verifying 2.21 and

- - n(s))(s)nss)  . s)r(s) (2.25)

verifying 2.22. It thus remains to show that r(s) = -. (s)/d.(s) is stable
for which we have

r(s) = - u () n -(s) + (,s), (s)]

= --2.(s)n,(s)uP(s) ) v ( d(s)d(s)u(s) -

d (s) - (s)VP(s) d1,(s)

= (s)u,(s) - nh(s)v(s) (2.26)

showing that r(s) is stable since it is expressed as the sum of products of
stable rational functions. As such, the entire solution space for equation
2.16 takes the form

nc(s) = nk(s) +n c(s) = -r(s)dp(S) +k(s)uD(s) (2.27)

and

d,(s)- d*!(s) + df(s) r(s)n (s) + k(s) (s) (2.28)

217
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where k(s) is an arbitrary miniphase function and r(s) is an arbitrary
- stable function.

Now, assuming that r(s) and k(s) are chosen so that $,(s) is not iden-
ticaily zero we obtain the desired set of compensators in thle form

[-P(s)d (s) +[(s)-s(s) ]
(s) =) [r(su) up k(s)+(s)]

U:-: " [-sia)/k(,) Jd,() ,(s)] - [- .'( "'(a )1) (2.2
[ (r( )'s)Ja, + u ,U) [-(s)a (s) , ]

. whore w(s) , r(s) Ik(s) spans the set of stable rational functioms such that
"w(s)n (s) + u (s) I is not identically zero.

In alidon to giving a complete parametiin of the stabilizing cor-
pensators if one views w(s) rather than c(s) as the underlying design para-
meter for our feedback system the expressions for the various feedback
system pins are greatly simplified. This follows by observing that the com-
pensator of the theorem yields the common denominator

idp(s)dc(s) + xpsx~) - I CL3*)
(since we have divided k(s) out of the expression for c(s) ). Assuch, the
denominators in Equations 2.9 and 2.10 drop out yielding the following ex-
predos for the feedback system gains wbic are lnear (actually affme) in
the desg paramete w(s).

,, 6. Corelluy. The feedback system ains which result from the use of the
compensator of the stabilization theorem take the form

Akl(1 W(S),. (.,(S)d,()+ ,,(,)dP(s) -W(s)i,2(S)-w,( )nP() 1
•'Lh.,,(5) h, 2(,J I. -.wfs),4(s) +a,U)d,() ,,(:)a,,(,W ,U()dgs)J

e4'. and..,

Lit(Sill) ( ( ) -(s) ( U S

Proof. These relationships result immediately upon substituting 2.30 and
the expressions for n,(s) and d,(s) of the theorem into equations 2.9 and
2.10.

The theorem gives a complete parameterization of the stabilizing

compensators for our feedback system modulo the requirement that
w(s)n.(s) + u.(s) not be identically zero. Needless to say, in our single-

*. variate case this requirement is trivially verified. Moreover,
w(s)n.(s) + u.(s) is idways non-zero for some w(s) hence the existence of

* ...

'2.0

I_..-
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a stabilizing compensator for any single-variate plant is guaranteed.

7. Corollwy. Every single-variate plant admits a stabilizing compensator.
Proof: Consistent with the theorem it suffices to verify the existence of a
stable w(s) such that w(s)nP(s) +v. (s) is not identically zero. Indeed,

* either w(s) - - 1 or w(s) - 0 suffices. If w(s) - - I fails, i.e.,

d(s) - -n(s) + up(s) a 0 (2.31)

then the coprimeness equality

I - uz(s)nv(s)+uv(s)d,(S) - [z±(s) +d(s) v±(s) (32)

* . implies that u,(s) is miniphase, since [u,(s) + d,(s) I is a stable inverse for
,, (s), in which case

dr(s) - [inzts)+vz,(s) - v,(s) (2.33)

is not identically zero.
Note that the above result is contingent on the existence of a coprime frac-

* tional representation for the plant and therefore may fail in the various
generalized settings to which the theory can be extended [8]. It does,
however, hold in the multivariate case wherein a coprime fractional repre-
sentation is also assured to exist [ 11 ].

Occasionally, one desires to design a compensator which'is a proper ra-
tional function; i.e., c(w) < ce; rather than simply asking for a stabilizing
compensator (2, 111. Now, c(s) - n(s/d,(s) is coprime via Equation
2.30 hence o(a) and d,(m) are not both simultaneously zero. On the
other hand n(am) < o since nh(s) is stable hence

W) f ()< CM (2-)

if and only if d,(c) - w(mo)n (co) + v(wm) O. Of course, in thiscase
w (s)n,(s) + v,(s) is not identically zero showing that the proper stabiliz-
ing compensators take the form

C(s) =- w(s)d,(s) + u. (s) (2.35)
w(s)nz,(s) + uV(s)

where w(s) is stable and

w(a)n,(m) + v,(.) # 0 (2.36)

We may now consider two cases. First, if the plant is strictly proper,
p (o) - 0, then n. (m) - 0 and since n (s) and v. (s) are coprime via 2. 1

* implies that v,(m) ;d 0. As such, 2.36 is satisfied for all stable w(s). On
the other hand, if the plant is not strictly proper, p(m) ; 0, then n,(am) 0
0 in which case 2.36 reduces to w(.) -v. (cc)In.(=). We have thus
verified the following corollaries [10, 1i].

I. - 219
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8. Corollary. If p(s) is strictly proper then the set of compensators given
by the theorem are all proper and well defined for every stable w(s).

9. Corolary. If p(s) is not strictly proper then the compensators iven by
the theorem me well defined and proper if and only if

wire) ,0 V -,

Finally. rather than simply looking for a prope compensator we may
desire to design a table compensator [25). Although such a compensator

does not, in general, exist, a criterion for the exist of a stable stablizing
compensator and an algorithm for its construction is given in Section 10 as a
coMlary to the simultaneous sab~iation thearem. The result is. howva,

- far from elementary and no ation of the space of such compen-
S --. saors is known [171. _

10. Exampk. For the plant of Example 4 with the coprime fractional
representation of of Equations 1.12 and 1.13 the required set of stabilizing
compensators take the form

Wrs (S-2) ] +161
(s+2) J L3

W(S) 0 (2 '7 [ (s+2))

"(s+2 (s+2)
With

,c(m) - -w(W) + - (2.36)
V q

.:verifying that the resultant compensator is, indeed, prope given a Strictly
proper plant.

Now, let us repeat the above exampe using the alternative coprime frac-
tional representation of Equation 1.14 and 1.15 which yields

r. r(s- 2)(,+) + (s+ 2)

W~s) 1
" (S + 0) 1 (+2/3) 1

f (S+21 F ~ l I__
-.- w (s) +2) 11

(s+S+2)

L +2) ()s+2)

.-- 2

"'220
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0 L (:4U-2)J J( s 2 wI I' 
( 2 3 9

(3+1)1 (s + ) 2/3)
s 2J (s+2)

where

W. (S) - W(S) (2.40)
(s +2P]

-- As such, the same set of compensators are obtained from the alternative
coprime fractional representation as from the original representation
though the perameterizations defined differ by the miniphase factor

(S+ l)21/((s+2)1.
Finally, let us set w' (s) - 0 in 2.39 obtaining the compensator

16(s +2)
c(s) - 3(s+2/3) (2.41)

Now, c(s) has a zero at s -2 which cancels the pole ofp(s) at s -2.
This does not, however, contradict the requirement that p(s)c(s) =
fn,(s)n,(s))/[d,(s)d,(s)] be coprime since our coprimeness concept
only forbids right half-plane pole-zero cancellations. Of course, a left half-
plane pole-zero cancellation such as encountered in the above example is
benign and need not be forbidden.

3. Tracking

Once we have stabilized our feedback system we may use the remaining
design latitude, the choice of a stable w(s), to meet various system design
constraints. The first of several such design constraints which we will con-
sider are the asymptotic tracking and disturbance rejection conditions
wherein we require that the system asymptotically follow or reject a

* prescribed input (4].

In the tracking (or aymptotic regulator) problem it is desired to design a
stable feedback system whose output, v2 , asymptotically follows a pre-
scribed input which we model by the impulse response of a transfer function
t(s), as illustrated in Figure 2. As usual we assume that t(s) admits a

ME +
I r~s +C(S) P(S)

Figure 2. Feedback system with tracking generator.
221
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coprnme fracional, representation n the form

r(s) a (S) (3.1)

where there soa stable u,(s) and u,(s) such that

ut(S)n,(s) 4 u+(s)dt(S) - I (3..)

We say that the .sww wacthe mpuw i'amw of t(s) if

t(s) - h-2,1 (S)i(S) - All, (S)t(') 0.3)

is stable. Recall that the impulse reaponse of a .ngle-variat system is
asymptotic to zero if and only if the c monupo transfer fwtion is
stable. Thus the response of our system to the impulse response of r(s) will
be asymptotic to the impulse response of I (s) if and only if the transfer of
equation 3.2 is stable.

Recall from Corollary 6 that -

* )(s) - ,(s)d,( 0.4)

hence if we desire to stabilize the system and simultaneously cause it to track
the impulse response of t(s) we must choose a stable w(s) such that
w(a)n.(s) + v (s) is not identically zero and

A~,,1(s(s) (S)R,(S)dP() +,(S)d 141'i(s)k", '' ( ) (: ) "d,(s) 'Oq

is stable.

" 11. Property. Given p(s) there edsts a compensator for the feedback
system of Filure 2 which stabilizm the system and simultaneously causes it
to track the impusise response of i(s) if and only if the equation

w(s)no(s)d,(s) +x(s)d,(:) - u,(s)n,(s) - I

admits stable solutions w(s) and x(s) such that W(s)n,(s) + up(s) is not
identically zero. In this case the required compensator takes the form

c(s) - w(s)d(s) + u,(s)

where w(s) is a solution to the above equation.

Proof. If there eadss a stable w(s) such that 3.5 is stable then it follows

[w(s)i,(s)dP(s) + UO(s))d(s)
d,(s)

tO.
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= [w(s)n(s)d,(s) + v,(s)d,(s)] [U,(s)n,(s) + v,(s)d,(s) 1 (.6)
• d, Cs)

.[lv,,,s)UP~s)d,,s) ,P(5)ds) ls)],,U(s) + (,S. 'In(SW(s) + u,(S)dP(.),(s)

- -x(s)

is stable since it is expressed as the sum of products of stable functions. Re-
arranging 3.6 and invoking 2.15 then yields

w(s)np(s)d,(s) +x(s)d,(s) - - (s)d(s) - u,(s)nP(s) - (3.7)

as required. Conversely, if 3.7 admits stable solutions, w(s) and x(s),
* where w(s)n,(s) + v,(s) is not identically zero we define c(s) by

C(S) (- w(s)d,(s) + u,(s) (3)
(w(s)np,(s) + v,,(s) I

using the w(s) of 3.7. Now, with this w(s) 3.7 and 3.5 imply That

*lpl - (w(s) n, ,(s) + v,(s)d,(s) ]n,(s)
d,(s)

(3.9)

(-x(s)d,(s) In,(s)
- d,(s) - -x(s)n,(s)

* is stable. Since the stabilization theorem implies that any c(s) in the form of
3.8 stabilizes the system while 3.9 implies that-h,,,,(s)t(s) is stable for this
choice of w(s) we have constructed the desired compensator.

Truddng Theorem: Given p(s) there exists a compensator for the feed-
back system of Figure 2 which stabilizes the system and simultaneously
causes it to track the impulse response of t(s) if and only if n (s) and

0 d, (s) are coprime. In this case let u.(s) and v, (s) be stable functions
such that

u,,(s)n.(s) + v.,(s)d,(s) , 1

and let a(s) - n,(s) /d,(s) be a coprime fractional representation of
a(s) = do (s) Id, (s). Then the desired set of compensators take the form

c~)=[ - w(s)d(s+ ps]

[wis) n,,(s) + vp (S)

where

w(s) = -u ,(s)v.(s) +e(s)do(s)

223
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with e(s) an arbitrary stable function such that w(s)n. (s) + v"(S) is not
identically zero.

Proof. Consistent with Property 11. it suffices to show that the equation

w(S),P(s)dP(s) +x(s)d'(s) - uV(s)n9(s) - 1 (3.10)

admits stable solutions w(s) and x(s) such that w(s)n, (s) + v (s) is not
identically zero if ad onlyif n,(s) and d,(s) are coprine. In this case we
thm show that the appropriate w(s) takes the form

• w(S) - ,u (s)u,(s) + C(s)d, (s) 0.11)

for any stable e(s).
If 3.10 admits stable solutions w(s) and x(s) then it follows from 3.10

- that
-. (s) n,(s) - (5)np()d(s)-x(s)d,(s) - 1 (3.12)

or equivalently

(uM(s) - w(s)d,(s))n (s) + [ -x(s) ]d,(s) - 1 0.13)

showing that n (s) and d,(s) ae coprime. Conversely. if a,(s) and d,(s) are
coprime there exists u,(s) and u.,(s) such that

,(s),(S) + V (S) d,(S) - 1 - (3.14)

from which it follows that

u,(s)n,(s)-I - -v,(s)dm(s)

- - [uw(s)n,(s) +vu(s)d,(s)u,(s)]v%(s)dp(s) (3.IS)

- [-uv,(s)u,($) ]n,(s)d,(s) + [ - u(s)v,(s)d,(s) ]d,(s)

As such,

W(s) - -uCs),(s) (3.16)

and

tI(s) - -vo(s)u,(s)d,(s) (3.1")

represent particular solutions to 3.10.
To construct homoeneous solutions 3.10 we def'ne a transfer function

a(s) by a(s) - d,(s)Id,(s) and let

( ) - - (3.18)
d,(s)

be a coprime fractional representation for a(s). It then follows from Pro-
perty 2 that there exists a stable k(s) such that

S224
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dp(s) = n,(s)k(s) (3.19)

and

d,(s) = d,(s)k(s) (3.20)

Thus if we define candidates for the homogeneous solutionion of 3.10 by

wh(s) - e(s)d,(s) (3.21)

and

xA(s) = -e(s)nP(s)n,(s) (3.22)

where e(s) is an arbitrary stable rational function we have

whn (s)ds +X((s)dd(s)
-. ((3.23)

e(s)d, (s)n. (s) n,(s)F(s) -e(s)np(s)fn,(s)da(s)k(s) = 0

verifying that 3.21 and 3.22 are, indeed, homogeneous solutions.

• To complete the solution of 3.10 we must show that all homogeneous
solutions are of the form 3.21 and 3.22. To this end assume that wh (s) and
xh (s) are stable and satisfy

.t4 (s)n. (s)d. (s) +_e(s)d,(s) = 0 - (3.24)

and define e(s) by

0 e(s) = w(s)d,(s) (3.25)

Clearly,

w(s) - e(s)d,(s) (3.26)

while it follows from 3.24 that

-&h(s)nP(s)d (s)
_2(s) = - d,(s )  -w)(s)n Pa(s)

(3.27)

e-(s)snn (s) n, (s

-= d, (s) = e(s)np(s)na(s)

showing that wh(s) and xA(s) have the form of 3.21 and 3.22. It remains,
however, to verify that e(s) is stable for which purpose we invoke equations
3.14 and the coprimeness of n(s) and d0 (s) from which it follows that
there exists stable u,(s) and v,(s) such that

Su,(s)n,(s) + v(s)d,(s) = 1 (3.28)

25
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* As such,

*e(S) -U -- (i(S) R, (S) + UVa(S) d'(S) I
do(s) L d,(s) .

1?w(S)u*(S)n*(s) + Wh(S)V'(S)
d*(s)

-t

S(,(s) d.

-[wh(s)u.(:)d,(s)] [u,(s)n,(s)+u,(s)d,ts)J + wh(s)v*(s)
d,(S)

- 5"(s)u*(s) u,$S).w(S)(S)d.4(sw(s)s) +dWv's,,(s) +w~~,s

is stable since we have expressed it as the sum of products of stable func-
dions. Note, the last equality in 3.29 follows from 3.24.

The solution space for Equation 3.10 thus takes the form
and w(s) - Uo (slu,,(s)+e(s)d.(s) (33)

x(s) - -u,_(s)u,(s)d,(s)-e(s)n,(s)n,(s) (.31)

As such, Property 11 implies that if the w(s) of Equation 3.30 is used to
define a stabilizing compensator as per the stabilization theorem it will also
cause the system to track the impulse response of T(s). Of course. we must
also assume that e(s) is chosen so thai W(s n, (s) + u (s) is not identically
zero. To complete our proof that the coprimeness ot1 n,, (s) and d, (s) is a
sufficient condition for the solution of the tracking problem it thus suffices

-~ to show that there exists at least one choice of e(s) such that
* w(s)n',(s) + v,(s) is not identically zero. From 3.30 it follows chat

W(s)n(s) +v,(s) - [uM(S)n,(s) +lu,(s)+e(s)d(s)n(s) (3.32)

Now, d*(s) is not identically zero since it is the denominator of a(s). As
such, if n,(s) is not identically zero it follows from 3.32 that the value of
W(S)n"(S) + v,(S) is a non-trivial function of ies) and is therefore not
identical to zero for all )(s). On the other hand if n,(s) w 0 then 2.15 im-
plies that v,(s) is iniphase which, in turn, implies chat w(s)n,(s) + v.(s)

up (s) is not identically zero. Our proof is therefore complete.

Although the proof of our theorem is long, though elementary, the basic
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result to the effect that a compensator exists which will simultaneously
stabilize the system and cause it to track the impulse of z(s) if and only if
n.(s) and d, (s) are coprime is simple to check (no common right half-plane
zeros). Moreover, the construction of the required compensator is simply a
matter of substitution as per the following example.

12. Example. Consider the problem of designing a compensator for the
plant of Examples 4 and 10 so that the system is stable and asymptotically
tracks a step function. Recall that

L S-4) 2 [(s-,) .do(s)

where L (s+2) j
16 r(s + 1) ] [ + 2/3 (r< - 2) .u:,W .<:> + ,.,<s),,)<(s) 1-(3.34)
3 L(s+2) 2  (s+2) J (s+2)J

While we take t(s) = /s from which we obtain

I ~ ~ ~ n [(+) (S)
i !s = is)

I s f s (3.3)

[(s+2)J

Now, n, (s) has no right half-plane zeros while d, (s) has a right half-plane
zero at s = 0. As such, n.(s) and d,(s) are coprime and according to the
theorem the desired compensator exists. Indeed,

[4 L( - + [ 2 .= (s)n.(s)+v,W d, = I (IM
U Ls+2)2 (s+ s2

As a final step in the construction of our compensator we let

d al(s) [L s+ ") J .(S)
O(s) = .n.. (3.37)

d, (s) d, 1 d(s)[(s +2)]
which is coprime since

[l r (s-2) + [2 , W n,(W + v(s)d.(s) (3.38)

LJ (s+2) j LL(s+2) J , . . ) (.8
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It thus follows from the theorem that the desired w(s) takes the form

F-4(s,23 S1
w(s) - -u,.,(s)u,(s) + e(s)d0 (s) - e(s) (3-39)

(S+2) (.+2)

- where e(s) is an arbitrary stable function. Substitution of any such
w(s) into

,€(s) - w(s)d#(s) u(s) (.40)".- [w(S)nP(s) +Up($)]E ."thus defines the required compensator so long as e(s) is chosen so that
w(s)n,(s) +v,(s) is not identically zero. To'verify our solution we may

substitute w(s) into the formula for h,, (s) of Corollary 6 obtaining

h1A1 (s) - $15 (s(f-2)(s+2/3) + (s+)(s-2)e(s)J (3.41)
'S. -

Since hp (s) has a zero at s -0 the required tracking property may now be
"*, verified by the final value theorem.

Now let us consider an alternative problem where we are required to
track ee2 U (t). Here our tracking generator is defined by

I(s -2) [S-2) d,(s)

1-(s I 2) j
As before n,(s) and d,(s) are coprime sinceE? ( ) . ] + [(s+213)]1[(s-1 - ,(s ,+n ,,(s)d,(s) - (3.43)

L(s2)-J L (s+2) J1(s+2)J

Finally, for this example we have

dp(s) (s+ 2)] 1 (s)a ($) M M4a Id,(s) I (s-2) l d,(s)

where

[01 11] + 1] [11 = u,(s)n(s) +u,(s)d(s) = 1 (3.45)

Note that in this example dP (s) and d, (s) are not coprime since they have a
common right half-plane zero at s = 2. For our purposes, however, all that
is required is a coprime fractional representation for a (s) = d. (s) /d, (s) as
constructed above. Using these new values for u., (s) and d,(s) we obtain

.'22

'S.'

,-~~~~~~~~. .... ,... .. _. . -.. .... .. .. .. ..... ... .. . . . -. . ., ,-S ,. '-, 5- t . , ' ... .... ,



.a * a * . ..4 -. & -. -. T- .

FEEDBACK SYSTEm Dgoiq

W S 16(s+2/3) + 5 (.6
w~s) - L3(s+2) s)(.)

for any stable e(s). This, in turn, yields

*h 1"'is (S [ + 2)J] [(9S3 - 652 -20S-S) + 9(s +1)s + 2)e(s)]) (3.47)

for which the zero at s = 2 indicates tracking. Note that every stable w (s) is
obtained for some e (s) and hence all stabilizing compensators track
P U M) in this example.

* 4. Disturbance rejection
There are two alternative disturbance rejection problems which arise

- naturally in our feedback system theory. Figure 3a indicates the configura-
tion for the input disurbance rejection problem ( 161 wherein we desire to
design a compensator which simnultaneously stab~ilizes the system and causes
it to asymptotically reject the impulse response of r(s), i.e., the response of

* the system to the impulse response of r(s) should be asymptotic to zero.

a)S

b) A

+ +

Fiur 3. +edbc syte co+grto o )teiptdsub erjciProb

Figr te outdakssemcniuain o )teiput disturbance rejection problem
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W.. ....... ...... . . . . . . . . . . . . . . . . . .



!*. .i'". SAlS ET AL.

A similar output disturbance rejection problem [4] is illustrated in
Figure 3b. Here, the distrubance is injected into the system at the plant out-
put and, as before, it is desired to design a compensator which simul-
tanously stabilizes the system and causes it to asymptotically reject the im-
pulse response of r(s). Surprisingly, however, the output disturbance rejec-
don problem is completely equivalent to the tracking problem considred in

-O'--the previous section. To see this simply observe that the block diagram of
Figure 3c is equivalent to that of Figure 3b. As such, if we design a compen.
sator to stabilize the system and cause the planr output to asymptotically

.- .. track the impulse response of - r(s) when the impulse response of r(s) is
*. - added to the plant output the total effect of the disturbance observed at v,

will be asymptotic to zero. Consistent with the above we give no further
consideration to the output disturbance rejection problem since it may be
resolved via the techniques of the previous section with t(s) . - r(s). In-
deed, one can solve the tracking and output rejection problem
simultaneously by working with tracking generator t(s) -r(s).

For the input disturbance rejection problem we require that the impulse
response of

h.. (s)r(s) - [- w(s)np(s)d,(s) +u,(s)n(W Ir(s) (4.1)

be asymptotic to zero. Hence to simultaneously stabilize the feedback
system and cause it to asymptotically reject the impulse response of r(s) we
must choose a stable w(s) such that w(s)n (s) +v (s) is not identically
zero and k,,, (s)r(s) is stable. The required theory [10] is essentially iden-
tical to that used to solve the tracking problem and hence we simply state
the pertinent theorems without proof. For this we let r(s) - n,(s) /d,(s) be
a coprime fractional representation for r(s).

* 13. Property. Given p(s) there exists a compensator for the feedback
system of Figure 3a which stabilizes the system and simultaneously causes it

., to reject the impulse response of r(s) if and only if the equation

0%' w($)no(s)d, () + y(s)d,(s) - ue(s)ne(s)

admits stable solutions w(s) and y (s) such that w(s)no(s) + u, (s) is not
identically zero. In this case the required compensator takes the form

I- w(s) do(s) +4-U"(S)]

-w(s)no(s) + ,(s) I

where w(s) is a solution to the above equation.

Disturbance Rejection Theorem. Given p(s) there exists a compen-
sator for the feedback system of Figure 3a which stabilizes the system
and simultaneously causes it to reject the impulse response of r(s) if and
only if d,(s) and d,(s) ire coprime. In this case let u,,(s) and L,,.(s)

./.
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be stable functions such that

ux(s)d,(s) + vp(s)d,(s) = 1

and let b(s) - nb (s)/db(s) be a coprime fractional representation of
b(s) = n,(s)Id,(s). Then the desired set of compensators take the form

C(S) W [- w(s)d,(s) + ys)

w(S)n'(S) + V (S)

* where

w(s) - u3,(s)u,(s) + f(s)d(s)

with f(s) an arbitrary stable function such that w(s)n,(s) + v, (s) is not
identically zero.

* 14. Example. Continuing with the plant of Example 12 let us consider the

problem of designing a compensator to reject a step function, i.e., we let

[ 1 ) n,(s)
r s) - i s d2) -

Now, (s(2)

[II - I 1-2)] -[2 - upF(S)d,(s) +vp,(S)d,(S) 1 (4.3)
(s+2) (s+2)

* showing that d.(s) and d, (s) are coprime. Finally, we let

b (S) = - -P ___ -s (4.4)

d,(s) s db(s)

[). . .. (s 2i) J

which is clearly coprime. From the theorem the required w(s) take the form

W(S) - UW(s)uP(s) +sf(S)db(s) = F- .1 + [ s if(s,) (4.5)
1 31 (s+2)J

* where f(s) is arbitrary stable function such that w(s)nP(s) + v.(s) is not
identically zero. The use of the compensator derived from this w(s) then
results in the gains

h (s J (s+ 2)- (s-2)f(s)I (4.6)

00
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and

h(S) - 2 I (s +2X3s 2 -8s - 12) 3s(s + )f(s) 1 (4.7)

Here, the fact that h,,, (s) has a zero at s - 0 indicates that the disturbance
rejection specification has been achieved while the fact that k t (s) has a
zero at s - 2 implies that the system also tracks . 'U (t).This is consistent
with Example 12 for the system tracks evU (t).

S. Sl .. tanes. takinm ad dfiuturbase njectlm
The purpose of this section is to combine the results of the previous two sec.

- tious by formulating criteria for the design of a compensator which
S -. - simultaneously stabilizes the syste, causes it to track the impulse response

of t(s) and causes it to reject the impulse response of r(s) [16]. The ap-
propriate feedback system configuration is shown in Figure 4 where r(s) is
taken to be an input disturbance. Of course, an output disturbance can also
be included in the theory simply by combining it with the tracking
generator.

+ ; 41 PI ,, + P

FIg, 4. Configuration for the siduo trucking and disfurbence rejection
problem.

For consistency with the previous sections we will use the same notation
which is reviewed as follows. Our plant is assumed to have a coprime frac.
tional represention

mnsps(s) s) -- (5.1)
do(s)

such that

uo (s) n,,(s) +.vo(s) d,(s) - 1(.)
while the tracking and rejection generators are characterized by coprime
fractional representations

" ~~() (S---($3
-.- n,(s)

.232
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and
* r(s) a - (5.4)

d,(s)

Also as in the previous sections we define a(s) and b(s) by

rP(s) no(S)a(s)-- n----- (5.5)
d,(s) do(s)

and
dp(s) n°(s)

b(s) - -n (5.6)
d,(s) do(s)

where a(s) = n,(s)/n,(s) and b(s) - nh(s)/db(s) are coprime in the
sense that there exists stable u,(s), v,(s), ub(s), and yb (s) such that

uo(s)n.(s) +v,(s) do(s) - 1 (5.7)

and

ub(s) b(s)+vb(s)db (s) - 1 (5.8)

• Moreover it follows from 5.5 and 5.6 together with property 2 that there
exists stable k(s) and r(s) such that

dt(s) - d°(s)k(s) and da,(s) = n,(s)k(s) ($.)

and

• d,(s) " db(s)m(s) and n,(s) - nb(s)m(S) (5.10)

Finally, the coprimeness conditions for the tracking and disturbance rejec-
tion problems are characterized by

uP,(s)n.Cs) + v.,(s)d,(s) - 1 (5.11)

0 and

u,(s)dP(s) + v,(s)d,(s) 1 (.)

while we will also require a coprimeness condition between d, (s) and d,(s)
which we characterize by the equation

u,,(s)d,(s) + v,,(s)d,(s) - 1 (5.13)

With this review of notation in hand the required design equations for
the simultaneous tracking and disturbance rejection problem can be ob-
tained simply by combining the results of Property I I and Property 13 and
observing that both design equations must be satisfied by the same w(s)
since we desire to construct a single compensator which simultaneously

• solves both problems.

233
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IS. Property. Given p(s) there exists a compensator for the feedback
system of Figure 4 which stabilizes the system, causes it to track the impulse
response of t() and simultaneously causes it to reject the impulse response
of r(s) if and only if the pair of equations

w(s)np(s)d,(s) +x(s)d,(s) - (,)a,(s) -

and
; .W(S)R'(S)dO(s) +y(s)do(s) -M (S)R"(S)

admit stable soluions w(s), x(s), andy(s) such that w(s)n,(s) + U (s) is
not idendcally zo. In this cue the requed compensator takes the form

,,-~~ -() [-i(s)d, (s) + ys)]
C(S) W-,.. .[w(rS)nO(s) + e(s)

where w(s) is a solutkn to the above equations.

Slmutameom Tracking and Disturbance Rejectls. Theorem: Given
p(s) there exists a compensator for the feedback system of Figure 4
which stabilizes the system, causes it to track the impulse response of

* t(s) and simultaneously causes it to reject the impulse response of r(s) if
and only if

(i) ,r (s) and d,(s) amecoprime,
Oi) Z(s) and d,(s) ar coprime, and

(Uii) d7(s) and d,(s) ar coprime.
4- In that fse the desired set of compensators take the form

".s (-w(s)dp(s) +(s) i
[w(s)n (S) +V,(S)l

where

w(S) - [uv(slusl(s),(s)d,(s) - (s)u,(s)v(s)d,(s) I + s(s)d(s)d, (s)

with r(s) an arbitrary stable function such that w(s)x,(s) + v,(s) is not
Jden tially zero.

Proof. The fact that n(s) and d,(s) must be coprime follows from the
tracking theorem while the fact that d,(s) and d,(s) must be coprime follo*s
from the disturbance rejection theorem. To verify that d,(s) and dr(s) must
also be coprime for simultaneous stabilization we subtract the two design
equations of Property 15 obtaining

." (,(s)]d,(s) + (-x(s)]d(s) - 1 (5.14)

Conversely, to show that the three coprimeness conditions are also suffi-
cient we must construct a w(s) which simultaneously satisfies the criteria for
tracking and disturbance rejections derived in the preceeding sections.
Upon invoking the resalts of the tracking and disturbance rejection
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*0 theorems we must therefore solve

-up,(s)v,(s) +e(s)d(s) w(s) = u,.(s)u,(s) +f(s)db(s) (5.15)

for stable e(s),f(s), and w(s). Since the required set of stable w(s) may be ob-
tained by substitution once e(s) andf(s) have been parameterized our main
problem is to characterize the stable solutions of

e(s)da(s) -f(s)db(s) = (uF(s)u,(s) +uP,(s)vP(s)] (S.16)

To obtain a particular solution for 5.16 we invoke 5.9, 5.10, and 5.13
obtaining

[u, p(s)u u (s) ,,(s)v(s)] u((s)d,(s)+v,(s)(s)

- [u1,(s)up(s) +u(s)v(s) ]u(s)k(s)d(s) +vt,(s)m(s)db(s)1

+ [[up,(s)up(s) + u,,(s)v,(s) ]vtr(s)m(s)ldb(s) (5.17)

As such, the required particular solutions take the form

eP(s) = [u,(s)u(s) + u,,(s)v(s) u,(s)k(s) (5.13)

and

* ifPs) - lu s)aP(+s) +U,,(S)T, v,(s)rn(s) (5.19)

Of course,

eh(s) - :(s)db(s) (5.20)

and

0 fh(s) Z(s)da(s) (5.21)

represent homogeneous solutions to 5.16 for any stable g (s) since

h t(s)d,(s) -fP(s)d,(s) - S(s)dts)d,(s) -g(s)d(s)db(s) = 0 (5.22)

As such, our characterization of the solution space for 5.16 will be complete
* if we can verify that all stable homogeneous solutions to 5.16 take the form
- of 5.20 and 5.21 for some stable g(s). To this end let eA(s) andfh(s) be ar-

bitrary stable homogeneous solutions to 5.16, i.e.,

eh(s)d,(s) -.f(s)d, (s) = 0 (5.23)

Now, define g(s) by g(s) =_eh(s)/d (s) in which case

eA(s) = gs)db(S) (.4
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while 5.23 implies that

- e P) d () :S(d(s) (5.2S)
- db (s)

showing that eh (s) and fh(s) are of the required form. It remains, however,
to show that g(s) is stibie. Indeed,

:(S) ---.- - [ub,(s)jb(S) +ub(S)db(s)J
db(s) db,(s)

* db (S)

-~w ()V,$ + h~bs~ [+A~,s +us) d,(s) I

dd,(s)

MIAM~~s) #A(J~b(S~ (S)V(S 1 (s)uY.(s) n. s) u, (s) d,(s)k)

elhw (S) Ubh( (s)n (sW (5)) d (s)dW s

me(s)vb,(s) .se"(s)ub(s)n,,(s)v,(S) t(~bsn~f~~) (526)
showing that S (s) is stable since it has been expressed as the sum of prod-
ucts of stable functions. Here, Equation 5.26 was derived with the aid of
Equations 5.6, 5.8, 5.9, 5.13, and 5.23. As such, the complete set of Solu-
tions to 5. 16 take the form

c~s -u(s~ 3 (s 4uX(S)vP(S) lu'(SMkS) +c(s)db(s) (&.27)

and

f(s) - [up,(S)u,(S) +u(s)v,(S)1 ut,(S)m(S) +g(s)d,(s) 0.-23)

Now, upon substituting either of these expressions into 5. 15 we obtain the
desired expression for w(s) in the form

.. W(S) a- ~Uff(s)V,'(S) +uP',As)Up(S) +UCS)V,(S)uff(S)k(S)d,(S) +s(s)d(s)d(s)

- u,.(su~(~u,(~ds) u,(s)v,,(s)u,(s)d,(s) - I* + (s)d,,(s)d4 (S)

-Iu,(S)U,,(S)u,(s)d,(s) - up(S) Vs(S) Vt(S)dp(S)]+5(S)db(S)d,(S) (S'M

'44
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where g(s) is an arbitrary function.
Finally, to complete the proof that the three coprimeness conditions suffice

for simultaneous tracking and distrubance rejection we must verify that there
exists one choice of a stable g(s) such that w(s)nP(s) + v.(s) is not iden-

* tically zero. Upon susbstituting 5.29 into this expression we obtain

w(s)n,(s) + vp(s) - [u,,(s)u,(s)u,(s)d,(s) -u,(s)v,(s)v,(s)d,(s) ]np(s)
(5.30)

+v(s) +s(s)db(s)d(s)n(s)

Now db(s). and d,(s) are not identically zero since they represent the
denominators for well defined transfer functions. As such, if n (s) is not
identically zero 5.30 will be non-trivially dependent on g(s) andhence not
identically zero for every choice ofg(s). On the other hand if n, (s) is iden-
tically zero the equality u.(s)n,.(s) + v.(s)d.(s) - I implies that v.(s) is
miniphase hence

* w(s)n,(s) + V(s) - vP(s) (5.31)

is not identically zero. Our proof is therefore complete.

Although the theorem is highly complex and, indeed, i6 predicated on the
equally complex theorems which preceded it, the final result is an explicit
description of the desired family of compensators. Moreover, the terms in

• this expression are readily computed by solving one or more coprimeness
equation. As such, the result is easily implemented as per the following ex-
ample.

16. Example. Continuing our analysis of the plant introduced in the
previous examples we will investigate the possibility of simultaneously

0 tracking e2 U (t) and rejecting U (t). Here,
(i-2)

d,(s) = - (5.32)(s +2)

and

dr(s) = (5.33)10 (S+2)
which are clearly coprime. Indeed

1 (]+2)J 2] uLs+2J ,,(s) +v,,(s)d,(s) 1 (5.3)

0 As such, the required w(s) takes the form

w s) = -:L6 (S2 + ±s+4) + s(s+2)g(s) (5.35)

L(s+2) 2  3 3

0
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yielding

h"5) + ,sl)S] -3 (S2 - (s-2)(s+2)g(s) (SJ)

*and

h.jo1 (S) - (g4 2, 32s2-112,- 144) +i.9(s+1)(s+2)Z(s) (5.3)

which have the required zeros at s - 0 and s - 2, respectively.
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A Design Method for Two-Dimensional
Recursive Digital Filters

JOHN J. MURRAY, MEMBER, IEEE

Aherect-A method fr desiging twodimensimal syrdihetric half- n
plane recusve digital fiters is presented: a filter is ft designed as a . ..

S parametrized family of onedimeasioeal filters; a smple approximation
is then used to fnd a rational, stale, two-dneslional filter. Some
advantages and disadvantages of the method are discumed, and mveral
example anshen.

I. INTRODUCTION m

* TIN THE past few years, several successful algorithms for the
.design of recursive multidimensional digital filters have been

published (e.g., [1]-181). However, it is probably safe to say Fig. 1. Support set for symmetric half-plane filter.
that nothing approaching a "universal" design procedure has
been developed. Of course, it is highly unlikely that such a half-plane filters in [101. Preliminary versions of the present

* procedure exists, in view of the fact that in the (much simpler) method have been described in [11] and [ 121. It may be out-
* one-dimensional situation it is already clear that a multiplicity lined as follows. Beginning with a frequency specification on

of design methods is necessary to handle the variety of prob- the tors

lems which arise. T2 = {(01,G0)1 - ir<01 <,- r<02 4It}
Although there are relatively few two-dimensional situations one first fixes 81, and designs a classical one-dimensional

in which recursive filters are required, there are many in which recursive filter in the variable 02. Doing this for each 01 gives
" recursive filters may be considered as an alternative to FIR a two-dimensional filter whose coefficients are (in general

1 filters. A major drawback in the application of recursive transcendental) functions of 01. One then approximates these
filters, however, has been the complexity and expense of their coefficient functions by trigonometric polynomials in 81. The

* design, especially when one is merely exploring the possibility result is a rational symmetric half-plane two-dimensional filter.
that they may be more. efficient than FIR filters. Indeed, The major problem lies in carrying ott the approximation in
there is evidence that in many situations the FIR filters will be such a way that stability is preserved. We will describe an
the more efficient 191. For these reasons, most designers approximation procedure which is noniterative, requires a

* simply use FIR filters rather than go through the nonlinear minimum of computation, and yields filters which can be
optimization procedures usually necessary to design recursive proved to be stable.
filters and to ensure stability.

A gap thus appears in the range of design algorithms; there I1. SYMMETRIC HALF-PLANE FILTERS
appear to be few procedures which can provide a relatively By a recursive symmetric half-plane filter, we will mean a
quick, suboptimal design which is guaranteed to be stable. filter whose denominator is of the form
This gap is highlighted by the fact that in two-dimensional B(Z, Z2 ) I + N ) b n
filtering applications it is relatively rare to encounter a situa- I M bM "4.
tion where it is important to meet precise specifications of the The corresponding

The orrsponingsupport set is shown in Fig. 1. One advan-
type encountered in one-dimensional filtering, e.g., limits on tage of these filters from the point of view of implementation
the passband ripple or the stopband attenuation. It is far more is immediately clear; they are ideally suited for parallel pro-
common to be given an idea of the "shape" of the filter with. cessing since the output at any point depends only on outputs

o out any numerical specifications. The design method described from The previous lines. It is therefore possible to process
in this paper is directed towards this sit "'tion. entire lines in parallel.

The basic element in this method is a recursive symmetric Another advantage of this class of filters is that its "stability
half-plane filter. This is in contrast with the asymmetric half- set" is slightly smaller than that of asymmetric half-plane filters
plane filters designed in 141 and the semirecursive symmetric and, of course, considerably smaller than that of quarter-plane

Manuscript received June 9. 1980. revised July 13. 1981. This work filters. The stability set for filters of the form (1) is the set
was supported by the Joint Services Electronics Program at Texas Tech defined by
University under ONR Contract 76-C- 1136.

The author is with the Department of Electrical Engineering, Texas S = {(Z,, 7) 6 C1 1ZI1 I and IZ1 I 41.
Tech University, Lubbock, TX 79409.
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,r 0 ' Fag. 4. Fan tiller: single 2 X 9 section.

-WI 0

* Fig. 3. Fan filter: Z2-order 2, Z, -order -.

design the compensating filter from the ideal characteristic

in (3); one must calculate the actual response of the two-
dimensional filter, and design the compensating filter di-

rectly from this. Since it is not our purpose to go into one-

dimensional filter design, we will not discuss this further.
Among the advantages of the above procedure is the fact

that it can use classical one-dimensional filters, and so enables
some of the intuition for and experience with these to be

carried over to the two-dimensional case. For example, the
ripple-free passbands and stopbands of the filters presented

in the next section reflect the fact that the design is based on

one-dimensional Butterworth filters.
A further advantage is that the response of the intermediate

filter (which is rational in Z2 and transcendental in Z1) is easily 0

calculated, and gives an upper bound on the performance of Fig. S. Fan filter: cacade of four 2 x 17 sectIos.
a filter with a given Zl-order. If this bound is not adequate,
one must increase the Z2-order; this is significant in that in- while the numerator array is simply

0 creasing the Zrorder linearly increases the computation needed 0 0 0 0 1 0 0 0 0

* in implementation, while increasing the Z2-order linearly in- 0 0 0 0 2 0 0 0 0.
creases both computation and storage requirements. It is I
therefore normally preferable to increase the ZI-order rather
than the Z2-order, if this is possible. In the present procedure, The symmetry of the fan filter is clearly reflected in the

when one has decided on a Z-order, increasing the Z,-order is symmetry of the denominator coefficients. While the resulting

simply a matter of computing more Fourier coefficients, and filter does not have an impressively sharp cutoff, it should be

changing the window coefficients-one does not have to redo remembered that the two-dimensional part has only five

the bulk of the previous computation. Thus the procedure distinct coefficients other than 0, 1, and 2, and was designed

lends itself readily to interactive design. with a programmable calculator (SR-52). Total computation
time was approximately 17 min with a 64-point quadrature for

IV. EXAMPLES the Fourier coefficients. A higher-order (computer-calculated)

The first example is the fan filter designed in the previous version is shown in Fig. 5. The computation was not timed,

section. Fig. 3 shows. the response of the filter with Z-order = but may be judged from the fact that the bulk of the compu-
2 and Z, -order a-s. Fig. 4 shows the response of the final tation consists of calculating forty one-dimensional Fourier
version. As calculated in the previous section. the denominator coefficients. A circularly symmetric low-pass filter with cutoff

array is frequency specified as jr/2 is shown in Fig. 6: this is a cascade

V 0.0000264 0 0.05252 0 0.2477 0 0.05252 0 0.0000264

0 0.001294 0 -0.2653 0 0.2653 0 0.001294 0
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MURRAY: TWO-DIMENSIONAL RECURSIVE DIGITAL FILTERS

second-order low-pass Butterworth fidter in the present case. Let-" This gives
"-'-'.ak • r/ +" ,. + bk.,

,. -W'(1 + Z2?
and

.~~ ~ ~~ VT.-" (a,* + I + 2((j3 - l)Z, + (cwe2 - w,e + I)Z| n

where 4t +
C a I tan ( 1,/2)1. and apply the windowing procedure to at and Ut (again with a

positive kernel of weight one) to obtain trigonometric poly-

3) We express (2) in the form nomials &k and Ah. Finally, set

ak(81) I +449,0)Z 2j +4. 2 (004 (3 b&2 ,4 + PA 1

b ,,)J1 I + 4, 1 e)z + ,2(e)z and

where-

..ik(G,) ,, d.V,)le ) It is shown in Appendix II that this procedure will yield a
stable filter and can be expected to give much improved per-

and similarly for the denominator. formance close to singularities. It should be noted, however,
For the fan filter, we pt that this procedure approximately doubles the number of

S.I- + 2Z2 + ZI coefficients in the filter.
I ," 1 +l%/Twe+W 1 + Z 2 ')Z i + 0,)ZI (4) Forthefan flter, wehave

l./w-lc()"d ){ 4 tn 2 (9ta2)

where " -1tan (0/2)+ VT I tan /21 + 11

00. €(,)1 + ,', + W2 and

141114
.*:. and a

*yw 1O~cI LtawO(01/) + v1tanI101/21+ 1
401) + Now since a, and 0, are even, periodic functions of 0, they

can be expanded into Fourier cosine series. If we retain only

At this stop, the fhat factor is just a one-variable function, the first three terms of each series (so that only three Fourier

and on. in pindciple, be approximated by a (tar in Z, by coefficients aed actually be calculated for each), and apply
using any suitable one-variable desg algorithm. The second a triangular window (Fejer kernel), we et
factor is a (transcandentel) symmetric half-plane filter expreased a
as a cascade of second-odw sectio in Z. Since each of the 01 1.0587 - (0.2518)2cos 0 (0.D0514)2co20

one-dimenald tSteas used is stable by design, it follows from and
the observation made in Section 11 that the resulting two. W
dimensional titer is stable, apart from possible singulariies A 1.0587+(0.2S18) 2 (O.00S14)2co20 1

which may arie on the distinguished boundary. Then can be and, so,
* shown to cause no stability problems in practice. (In the

prnt example, such sinularities occur at 01 -0, ; however, bl', 0.001294Zj " - 0.2653Z ' - 0.26S3Z1

they disappear in tde next step of the deslp procedure.) + 0.001294Z s

4) The final step in the procedure is to approximate the and
• .'., zuntioudsk4(0 ,) by trigonometric polynomials, and to approx.
* imate the functions bkj(0 1) by trigonometric polynomials b,. - 0.0000264Z; 4 + 0.05252Z-" + 0.2477

bk.j(0t) in such a way that stability is preserved. The latter 2

"" approximation is the only one which presents any difficulties.
It could be tackled by nonlinear optimization methods, but This completes the design of the two-dimensional part of the
we wish to use a method which is les demanding from a filter since the numerator is already a function of Z2 only.
computational point of view. As was mentioned previously, the one-dimensional compen-

The most obvious approach is to window the Fourier series sating filter in the examples presented in the next section was
of the functions bik,(9 1). It is shown in Appendix I that the chosen to be a simple FIR filter, which was designed by win.
resulting filter will be stable if the trigonometric kernel corre- dowing. Actually, a separate compensating filter was designed
sponding to the window used is positive everywhere and has for each second-order two-dimensinal section [i.e., for each
total weight equal to one. However, for reasons discussed in k, 1 (k 4 n in (2)], the order of the compensating filter being
Appendix !1, this gives very large errors close to singularities, equal to the ZI-order of the corresponding section. Unfortu.

,. and the following slightly more complicated version is used nately, since the approximation procedure in step 4) exercises

S instead. very poor control over the passband gain, it is not possible to
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0
If we then let In general, the denominator of a second-order continuous-

time transfer function can be expressed in the form

f1 :s(O)P(l -0 )dO I' + 2 wo s + c (7)

where wo is the undamped natural frequency, and the damp-
* and ing ratio of the system 1 17]. Comparison of (6) and (7) yields,

for the continuous-time undamped natural frequency,

-(0)t O)d O )d 1 +-+
I -c+d

s and t- will be the windowed versions of s and t, and we will
have and for the damping ratio,

I~9aIii~s(O)P(9n-#)doj r ( -
I 2Wil ,f ((+c+d)(l - c+d)

Thus, if the bandwidth approaches 0 or 2w, we must have

S f~ Is(O)lP(O. - #)do either I+c+d- O
or I -c+d-O

.c-- W(I,+ t())P(,-,)d#(5) and if the damping ratio is to remain finite, we must have
21)fir I - d - 0 (this is the situation in the fan filter designed in

Section I1).
<1 f Now suppose the errors made in approximating c and d are

C 2w J 2P(01-- O)d# of the same order, and that they swamp the actual values of2w fthe quantities which approach 0. If the order of error is e, then
i2. e

Since (5) is just I +t(01),weget /4-c 2'

1 () < I + F(6)<2 i.e., the damping ratio will be very small, and will decrease
* and so for each 01, the polynomial with increasingly accurate approximations to c and d. Thusnot alone do we get poor performance, but increasing the

I + '(0 1)Z+ (Ot)Za  order makes it worse! This is precisely what is observed in

has no zeros on the set <11 . Itfopractice.

that the two-variable t l l ' ). It follows immediately Suppose, however, that we approximate

*1 1c+d and O-= T-c+d
I + A(01)Z2 + t(O)Z 2  and suppose for definiteness that I - c + d - 0. Then in the

3252above situation d - I and I + c + d - 4.

is stable. Q.E.D. If a and O denote the approximations, we then define

APPENDIX i d = ( +

0 When the above windowing procedure was used directly, the and
resulting filters exhibited gross underdamping in regions where
the bandwidth (in the 02 direction) was close either to 0 or a
2.. We will now discuss the reason for this, and justify the and it then follows that the damping ratio of the approximated
procedure given in step 4) of the design. filter is

If we are given a second order discrete time filter with
denominator I + cZ + dZ2 (where c and d are arbitrary real ?* (2 - &)(2 + a) + 02
numbers), we can transform it into a continuous-time filter 2ap
by using the bilinear transform If we make the same assumptions as before, we get (2 - a^) e e

I -s and 0 - e and, so,
I+u" e(4 -e)+ e2

• This results in a second-order filter whose denominator is 2e(2 -e)
(with unity leading coefficient) -a much more acceptable result.

0 1 - d I d ( It remains only to show that this procedure gives a stableI2 -+ l-+ - d c (6) fter, i.e.,that [II< I +a<2 forall0 1 .
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3r 0 -.- 1

Ff".6 Cirmaisry symuled 10W-em (Ote: COCda of two 2 X 17 F*u 7. Ckcululy symnie%*i wymw ier: CIUMS 0( four 2 X 41

of two 2X 17 flters. Finally in order to indicate the numeri- K K
calistability of the procedure, the sunespeciflcation was used AZ1, Z2)
for the impractically large filter in FR5. 7. (Because of the high I + L LZ~
Z1 -order, the effect of the one-dimendonal filter wus inserted na mu-N
artificially in this figure; also the elliptical dhape of the pus. then
band is an artifact of the plotting system.)

We note that In the above filtes, a cOcadof two 2X 17 1
*sections, for example, would be a 4 X 34 filter if it were TVJf In k( 1 , 02 )d82 -In X

expremad in direct form, and so would require twice as many
coefficients to be stored and manipulated. For this itason, This follows from the fact that, by the stability condition,
these fl~ters should be unpiented in cascade form. for each fixed 0 1 the one-variable polynomial

V. CORUcsMM uco, Z

We have described =n ixpensive. suboptimual method of has no zers in the unit disk {Z~I~11. It therefore hasa
designing stable half-plane recursive fiters s a cascade of &ll analytic logarithm there. There the function
team each of which Is second-order in the prinipal disection 1, n' Z'UtIjPSZ
of recursion. In the examples presented, analytic expresions InIJ''A' tInJeP.Z
were available for the cascade form of the one-dheansional is harnonic on the unit disk and so, since the mean value of a
filters used; however, even when this ks not the case, continua- harmonic function on a circle is equal to its value at the center
tion methods [141, (151 are Ideally suited to the numerical of the circle, we get
calculation of the appropriate coefficients.

The majot open problem associated with the method is un- I (
doubtedly the development of more effective approximation 2w f1. in 8(e', eo)I dO - In 5B(qpI 0)1
methods for the denominator coefficient functions. While the
method used above Ives quite satisfactory reults, one can not u In IlI
help feeling that one should be able to do.a wel with half the a0. QXED.

* tumnber of coefficients (since the apprxisating polynomial is
square after its order ha been chosen)Futem efth The second statement to be poed is that windlowing by a
approximaition procedure controlled the puaband gamr window whome kernel is positive and of total weight one pm
tightly than the penIt method does, it would be possible 56111 stability.
to design the one-dimensional compensating filter from th Pwof:' Let the kernel be M() (an nth order trigonometric
ideal response rather than from the actual - woimnaiopl Polynlomial) and =minme that NO9 ;0 0. V8. and

* remsponse. Thus an improved approximation procedure would
yield multiple benefits. P(O) I.

4%Such approximation procedures, together with extensions of 2
- th ab ve esin m tho , ae curenly nde t~W~tptifl. Let I + s(9,)Z + t(O 1)Z2  be any second-order polynomial in

APPENDIX I Z whose coefficients are periodic functions of 0~
Hem, we pSuppose the function I + s(f )Z + r(9 1)Z2 has no zeros on

erwprove two statements made in the paper. The flit the set (ZIZ I)frec9:Thsieqvanto[6:
is that if k'(81,81) is the magnitude response of any steble I'(') < +( 1)<2 ahv1hi.seuiaet o11
transfer function s0 <I+4 )<2. V1
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Fractional Representation, AlgebraicGeometry, and the Simultaneous
0e Stabilization Problem

RICHARD SAEKS, F ,LLow, iEEE, AND JOHN MURRAY, m B., MEE

* Abstra-Anexplict reladosp betwee the fradlomI repntato m and we desire to design a stable feedback system using a
appmoc feed bad sem dusliga de algebr.o-poetulc appiah t o proportional compensator with gain t. This results in a
ssem tao.y is formulaed md used to detie a global solimto t he with characteristic function

I leak Ays"om problm. Thes teduie re dts apdie to de sm ..t
senesus mtblmuadm problem, yiding a mitsuail geometric awienom for a
a of plaits to be simultaeously stabili d by a sigle ce ator.- d(s)=s+(B + ) (12)

0 -and, as such, the feedback system will be stable if and only

1. IT RODuCTION if B + tA>0. Here, for a given compensator t, the feed-
- back system will be stable if and only if the point (A, B)

'LASSICALLY, in control theory one is given a plant lies above the line with slope I/t as shown in Fig. I(a). As
•,..#and desires to design a control system around this such, if we want to simultaneously stabilize an entire set of
plant which meets certain design specifications. In fact, plants, their representations on the A-B plane must all lie

0 however, a "real world" plant is never known exactly and, above a line through the origin. For instance, the set of
as such, a realistic design must simultaneously meet specifi- plants indicated by the hatched region in Fig. l(b) can be
cations over -an entire range of plants which (hopefully) simultaneously stabilized (by a compensator with gain
include the actual plant. The simplest form of the resultant - J), while the set of plants shown in Fig. 1(c) cannot be

".simultaneous design problem is the robust design problem simultaneously stabilized since they subtend an angle
wherein one desires to meet the design specifications in an greater than 1800 on the A-B plane Similarly, the set of
t ball around a prescribed nominal plant. Althoulgh this is plants shown in Fig. l(d) cannot be simultaneously stabi-
satisfactory for dealing with modeling errors, it cannot lized since they cross the negative A axis.
cope with plants containing unknown parameters and/or The above example suggest two alternative criteria for
plants characterized by multiple modes of operation. For the simultaneous stabilization problem. One may adopt an
instance, the dynamics of an airplane or rocket vary widely algebraic criterion to the effect that
with altitude, while the dynamics of an electric motor
change with speed and load. To cope with these problems, B + L >0 (1.3)

- we must formulate a simultaneous design theory in which for each plant in the prescribed set and some t. While-such
one designs a control system to simultaneously meet speci- a test is definitive, it is local in nature, allowing one to test
fications over a prescribed set of plants. Of course, the set for stabilizability on a plant-by-plant basis, but yielding no
of plants may be taken to be a ball, in which case the global criterion with which to characterize a set of plants
classical robustness theory is replicated. Alternatively, one which is simultaneously stabilizable. To the contrary, one
may choose to work with a set of plants in which one or may adopt a global geometric viewpoint to the effect that a
more parameters vary over a prescribed range and/or a prescribed set of plants is simultaneously stabilizable if and
discrete set of plants, say, the dynamics of a two-speed only if it is contained in an appropriate half-plane. The
motor in its high- and low-speed settings. goal of the present paper is the formulation of a similar

The simultaneous design concept is possibly best il- geometric criterion for the simultaneous stabilization prob-
" lustrated in the first-order case wherein a simple geometric lem applicable to general linear systems.
solution suggests itself. Assume that our plants are of the The starting point for our theory is the ring-theoretic
form fractional representation theory introduced by the authors

A in a series of recent papers 19J. [16) in which the set of
" p(s) = a (.1) compensators for a given plant are parameterized. More-

over, as a first cut at the simultaneous stabilization prob-

Manuscript received December S. 1980; revised November 9. 1981. em, one can reverse the role of the plant and compensator
Paper recommended by E. W. Kamen. Chairman of the Linear Systems in this theory to parameterize the set of plants which are
Committee. This work was supponed in pan by the Joint Services
Electronics Program at Texas I.ch University under ONR Contract stabilized by a given compensator. In practice, however,
76-C. 1136. one is not given a compensator a priori and, as such, we

The authors are with the Department of Electrical Engineering. Texas
Tech University. Lubbock, TX 79409. must characterize the set of plants obtained by the latter
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(a) A \ (b)~ % is simply one manifestation of a family of. related ap-
\ . proaches to the contrcl system design problem developed

so..siim ' during the past half-dozen years by Petnebo and Astrorn
S . [13, ,141; Antsaklis. Pearson. and Cheng[ ][6], [7]; Youla,

/ Bongioo, Jabr, and Lu [and Zames 261 among
others [2], [20], [21). Indeed, the approaches of these authors
are all closely related, any one of which could have been

(C) used as the basis for the present investigations. In particu-
lar, the formulation of Zames is applicable in a general

' " ring-theoretic setting, and is essentially equivalent to that
employed herein

t. t. II. FRACnONAL RI EsENTATOm AND Tm
* GRASSMANKIAN

parameteizaton independently of the choice of compensa- The algebraic fractional representation theory is set in a
tor. For instance, un our first-order example, the set of nest of rings, groups, and multiplicative structures:
plans in Fig. I(a) are stabilized by a given compensator

-with slope I/t, while a given set of plants is simulaneously g~h~i~j.
stabilizable if and only if it lies in the half-plane above Heg is a ring with identity which represent the general
-some line througlh the origin. For the general problem, this class of systems with which we wish to work: rational
is achieved by translating the fractional representation matrices, continuous operators, a class of transcendental
theory into an appropriate geometric setting in which the functions, etc.; and A is a subring of g containing the

,- ~"shape" of the set of plants obtained from the latter identity which models the systems which are stable in some
. parameterization may be characterized. In turn, the simu- sense: poles. in a prescribed region. transcendental func-

taneous stabilization problem may be resolved by requiring t with restricted singularities, causal operators, etc.
that the given set of plants ie in a region of the ap- Fnaly, i denotes the multplicative set composed of ee-prpit "PhPL inly eoe hemlilctv etcmoe fee
prIded, he aportments of A which admit an inverse in S, whilei denotes the

Indeed, the appropriate geometric setting proves to be multiplicative subgroup of i made up of elements which are
just the Grasamannian first introduced into the system invert'ble in h. Detailed examples of this structure were

thoyliterature by Hermann and Martin I(I1I. (12). Unlilm e ni 4md[8adwllotbreudhmtheir frequency domain formulation, however, we obtain We say that a system s CZ has a right fractional represe.
. the Grassmannian directly from the ring-theoretic frac- ttion (g, A, i, j) if

tional representation previously, employed by the authors.
Indeed, the Grassmannian is obtained simply by factoring s = n,,d:'' (2.1)
out the nonuniqueness inherent in the fractional represen-
tation theory. As such, in addition to formulating the where n,,F A and d,,E i. Furthermore, we say that this
global tbeory necessary for our study of the simultaneous representation is right coprime if there exist u,, and o, in h
stabilization problem, the geometric approach yields new such that
insight into the relationship between the fractional repre- o + =1. (22)
sentation theory (which we identify with the elements of a
general linear group) and the system itself (which we This equality is equivalent to the classical coprimeness

" identify with the elements of a Grassmannian). concept for rational functions and matrices, while being
In the following section, the fractional representation defined in our general ring-theoretic setting. In particular,

theory is reviewed and the required Grassnannian is con. if g is the ring of rational functions and k is the ring of
structed. The resultant theory is then used to formulate a polynomials, (2.2) implies that n, and d, have no common
global description of the set of stabilizing compensators for zeros, and if g is the ring of rational functions and , is the
a given plant in Section II. The resultant formulation also ring of exponentially stable rationai functions, (2.2) implies
yields new insight into the problem of stabiizing a plant that n,, and d1, have no common right half-plane zeros.
with a stable compensator [25] for which a necessary and Since Z is, in general, noncommutative, we also define a
sufficient condition is also derived in Section III. Finally, left fractional representation for s via the equality
ihe simultaneous stabilization problem is investigated in
Section IV wherein both global geometric and local alge- S d 'n, (2.3)

braic criteria for the simultaneous stabilization of a pre- for nsi h and d,, r i. Furthermore, we say that this repre-
scribed family of plants are obtained. sentation is left coprime if there exist u and vi, in h such

Although the present paper is formulated in terms of the that
abstract (pseudo) coprime fractional representation theory

. of [S. [91, [10], [161-[191. it should be pointed out that this n1,u1 + di4 =L . (:.4)
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Of course, in the classical case of a rational function or where a, = [d 't, is an appropriate "partial state" vatn-
matrix, these fractional representations are assured to exist able. As such, the 2X2 matrix R, defines a natural model
I10]. However, this is not the case in the general ring-theo- for the given system. Indeed, when such a model is em-
retic setting. Therefore, for distributed, time-varying, and ployed, one can drop the invertibility requirement on d,

* multidimensional systems, we assume that our plants admit (and d,,), although the matrix R, must still admit an
such a representation as a prerequisite to the theory.' inverse with entries in h 2

Interestingly, however, if such a representation exists, we Since the 2X2 matrices R, and S, have entries in h and
may, without loss of generality, choose u,, and u,, such that admit an inverse which also has entries in h, they form a
the equality group which we denote by GL(42), i.e., the general linear

group of 2 X 2 matrices with entries in h. If the elements of
* i,,U,,--U,,V,, (2.5) GL,(2) are, however, to serve as a viable system represen-

also holds (8]. In this case, we say that the representation tation, we must be cognizant of the fact that several such

for .j defined by the eighi-tuple (n,,, d,,, u,, , n,, matrices may represent the same plant. The appropriate
do,, u1 , ,v,,) is doubly coprime and we express the defining equivslence classes may, however, be characterized with

equalities of (2.1)-(2.5) via the matrix equality R'1 = S the aid of the subgroup E C GLh(2) composed of the upper

where triangular matrices

R= [do - (2.6) E [ e,, e (2.11)

and in GL,(2). Note that since these triangular matrices are

Vo rF (7assumed to be in GL(2), it follows that el, and en are inj.

S, ntd,, (2.7) Property 1: LetR, and A,be in GL,(2). Then R, and R,
I-- n "represent the same system if and only if there exists EG E

It is inteiesting to compare the above formulation with such that Rs = AS E._
that proposed by Zames (26]. Rather than working with an Proof. If Rs = RE for some Ee E, then

unstable system, s, Zames; assumes that the given plant is ill~l (2.1~ 1 2
first stabilized via classical techniques, and then develops ;,J R. = 0EJ- =R J (2.12)
his design theory around the resultant stable plant . Now,
since I is stable, it admits the :rioiai right coprime represen- where 9, = ela,. As such, the set of input-output pairs
ration Il 1 with the equality defined by R, coincides with those defined by R, except

for a change of parameterization.
[0][s] +[lI][r = u,n,-!+o,,d, 1 (2.8) If R, and A, define the same set of input-output pairs,

implying right oprimeness, while a similar equality defines then for any such pair (,,, o,,), there exist a, and 8, such
implingrigh corimeess defnesthat

a left coprime representation for 1. As such, the matrices

R,. and S, take on a very special form, permitting Zames to j = .] 1 A, 3)
implement his design theory without explicitly dealing with , 0 R0 0 (2.1
u's and u's nor even introducing the coprimeness concept-. The key to our geometric formulation of the fractional which, in turn, implies that

representation theory lies with the observation that the 1o A,- IRal (2.14)
2X2 matrices R, and S, constitute a natural and concise o - 0R,0] 0J".
representation for the given plant which can serve in lieu of
the eight-tuple of n's, d's, u's, and u's. Indeed, if the Now, E = A,'R,E GL,(2) since R, and A, are in GL,(2),
input-output relation for our system is charatterized by while R = R,E by construction. As F-ih, it suffices to show

p the equality that Ee E. This, however, follows from the fact that (2.14)
holds for all a, (and a corresponding 8,). U

, s, - [n,d;'],, (2.9) Given that any two representations in GL,(2) for the

then the admissible input-output pairs [9) (c,, P,) for our same system differ by a left factor in E, a natural setting
plahnth are pararst[9]zed by the equalityfor our system theory is the quotient space GL,(2)/E.

t ae Although GL,(2) is a group and E is a subgroup, E is not
d: ,~ 10)= normal and, as such, GLA(2)/E is not a group. For-
n, , , (. 1 0 tunately, however, the resultant coset space (of equivalence

classes) is a well-known and much studied geometric ob-

'Computationallh. the evaluation of u and C,, (or u,, and t,) reduces
to the .olution of a linear equation in the rin& h In particular. if A is a In the case where d, does not exist, the plant defines a relation ratherrin5 f stable rational function.or matrices thereof, one can multiphs (2.2) than a function on the input-output space. The resultant relation is.
andl (41 by a common denominator, and thereby reduce their soluton to however. parameterized by a,. Moreoter. since R, is invertible. the
that of a clasical pol~nomial equation, relation is normal in the same sen.e of [ 151.

251

-, . ". . . -. - , ". ,- , . . .' .- .' .- . . .. - .-. -. . . ,. . . . . -'. -". -'. . % . , . . ". --. '. . . - .-. , , A.-A-,_



ject. the Grassmannian (1] Ga(1.2), which we will adopt as el [ OJ , e,
the basic setting for our system theory. 3  = g. = 0e

Since E is not a normal subgroup of GL,(2), Gb(i,2) is
not a group and. as such. ds not admit an "internal" ell 12 1
algebraic structure. The group GLh(2) does, however, act as We I (e e+,4 e=)
a set of transformations on Ga(I, 2). Indeed, if TE GL5 (2)
. nd [UJE G(I.2) is the equivalence class of UEGL,(2), showing that , e C- j [since E is invertible in GL,(2)].
we defiae• Conversely, if I z j, we may factor T via

ISU1V] J.2) 21) Ti[ '13] f[.r 0 1[11 1 1 1j~ = WE.
Now, if[UJ=IV, then Property I mpliesthattha is Le xis tI 1 L0 In_ 22 tt =WJ
S EE such that V n UE; hence. (2.19)

T[V]=T[ UEJ =(7V1 (2.16) Since S316j, w=t:zt' and 2ti-tz111t2 are in h..Thusvao the unit triangular nature of W implies that it is in GL,(2).
via Property I. AS such, the operation of GL 5:(2) on LmntunhweetphSta

G1 t L2) is well defined. This, in tur, however, implies that

- As a prerequisite to the formulation of our stabilization E = W1TeGL(2) (2.20)
-*wry. it is necessary to characterize the stable systems as
interpreted in GLa(2) and Ga(1,2). Recall that ifs r stable since GL5 (2) is a group. Since E is upper triangular and
(.s k) , then s admits the doubly coprime fractional repre Er GL.(2), EC-E, as was to be shown. e

". sintation Since Wtand E are both groups, the equality S$= WE

implies that S - =EW. Now, a little algebra similar to
,: - o. (2.17) that used in the proof of Property 2 will reveal that

$ I." TES-1 if and only if tn j. Indeed, S and S-1 are
Denoting the set of such 2X2 matrices by WCGL5 (2), it precisely the.wo classes of matrices for which the 2X2
then follows from Property I that the set of all representa- matrix inversion formula is applicable 1163.
tions for the stable systems in GL(2) take the form Before concluding this section, it is instructive to com-
S WE and, as such, they are represented by ISIn(WE3 meet on the relationship between GL,(2) and G,(l.2). In

= [ W1 C Ga(,2). Although W and E are both subgroups essence, GL,(2) is a set of representations for our systems,
of GLa(2), they are not commutative and, as such, - WE while GA(I,2) represents the set of systems. That is to say,

* is not a group. S is, however, characterized by the follow- GL,(2) is composed of the computationally tractable ob-
ing property. jects with which we actually describe a system, although

Propm 2: Let many such objects may represent the same system. On the
contrary, each element of G,(1,2) is uniquely identified

112 [with a system, and hence we may think of G,(1,2) as
T= t t "being the set of systems" (or, at least, being in one-to-oneI 1I22 )2J correspondence with the set of systems). On the other

hand, the elements of G(1,2) are not computationally
be in GLa(2). Then TES if and only if tI1 j. tractable, except through the intermediary of GLa(2). In

Proof: Since S WE if TES, then T=WE for some practice, therefore, a plant is characterized by one of its
WE W and EEE; hence, representations in GL,(2, while the goal of the system

design problem is to specify an appropriate compensator in
'lt k is the field of scalars. G,(1.2) is the classical Grassmatman (of Ga(I,2). That is, we are designing a compensator rather

Une in 2-spacel. whereas if k is taken to be x X a matace. G,(1.2) than a representation of a compensator, and hence even
reduces to the clasical Grassmaman of a planes in 2a space M13.
Ahough these classical Grassmanntars have an anslvc structure (coal- though we work in GLk(2) as a matter of computational
pact manifold) which may not be shared by our abstract OntismanmoL necessitv, the result of the design process is an element of
the algebtaic properties of G,(1.2) me all that is required for the present

. . eory. and hence no dificult is encountered by working with elements G5(I ,2).
taken from an abstract rin$ Indeed. for our purposes. we only use the fact
that G,(I.2) is the c=t spac GL,(2)/E and identify it the Grassman-
plan only to make th lon th the Classical literature

It is iteresuti to note that the Orassm'nnian has been used as a 111. STABILUZATION
naturaj stcting for multi% aiate systems by mathematical system theorsts
fot a number of years [20). 129). 132). Here, a system represented by an The basic feedback system we consider is shown in Fig.
n X a frequenc, responbe matrix is identified with a curve takin values in
the ciasaca] Orassmanntan of a planes in 2* space. As such. "9m theory 2. The system is characterized by the connection equations
ideitfies a system with a Grassmannian-valued function. -hile our
formulation identifies the system with a Grassmannian built from a ring (3.1)
of functions. Of course. the two approaches are completely iquivalent in (31
the mulusar.ate case. while the present formulation is also well defined
for gemral linear systems ime-varyin. distrbuted. etc.). and
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. ., TS] =([TS]; SES) CG,(l,2). (3.9)

Finally, let R €(Rp) denote the set of stabilizing compensa-
tors in G,(1, 2) for a given plant represented by R E

* Fig. 2. GLb(2).
Theorem: R.( R,,) = QR.,Q'[S].

p (3.2) o Proof: To prove the theorem, we will show that the set
of all representations for the stabilizing compensators in

while the plant and compensator are characterized by GL,(2) takes the form QRQ'S for some SE S, from which
the theorem follows upon mapping these presentations into

* "1=R' P (3.3) corresponding systems which are identified as elements of
P 

0  G,(l,2). If Re= QRQ'S for some SES, then

and . .[R, P, + Q'RQP2] = [R,P, + Q'(QR,Q'S)QP,]
SR ,  (3.4) = R,[P+Q'QP2 ]. (3.10)

* - respectively, where R and Re are in GLb( 2). Letting Q be Now, if
- the 2 X 2 matrix in GLh(2) defined by s=[;" IS (3.11)

= 0 1 (3.5)S21 S2

with s,,ej, since Se S, a little algebra will reveal that

the connection equations (3.1) and (3.2) can be expressed rs - ,S -
* QISQ = -12 $1, ,sJ (3.12)

ep =Q)] + (3.6) since (Q'SQ),=s,,ej. As such,

A little algebra will also reveal that Q ' = - Q; hence, R,'[P+Q'SQP2 ] =R 0  S22EGL(2)(3.13)

this connection matrix is readily manipulated. Finally, the
substitution of (3.3) and (3.4) into (3.6) yields the equality showing that the feedback system with compensator

#2 R _ 1 QR QS is stable.
All 0 -QR, J =R=Po, 0j-QR0QP 2 0  Conversely, if Re is a stabilizing compensator for the
F1J feedback system,

] (3.7) + Q'RQP2] r GLh(2). (3.14)

Here PI= diag[1,01 and P2 = diag[0, I]. Moreover, since Q and R. are in GL,(2), we may, without
On the basis of the above formulation, we say that the loss of generality, assume that Re is of the form

system is stable if and only if R= QRPQ'X, (3.15)

S[R,P + Q'RQP2] e GL(2). (3.8) in which case it suffices to show that

Since [RP + Q'RQP2] has entries in h, (3.8) implies that
its inverse exists and also has entries in h. As such, a X=QR;'Q'R,$S. (3.16)

feedback system will be stable if and only if the relation-
ship between its input vector col( 2,p) and its partial To this end, we observe that

state vector co(a,, o,) is stable. With the aid of (3.3) and [R,, +Q'R [P, +Q ,(QRPQ X)QP]
(3.4), this, in turn, implies that the relationship between the
system input vector and all of its internal variables is = R.[P +Q'XQP]
stable, and the converse is also true [9).

With these preliminaries, we now proceed with our first X -

theorem in which a geometric characterization of the set of = R0 0
stabilizing compensators for a given plant is obtained. To 10 x1I

this end, recall that S is the subset of GL,(2) correspond- since
ing to the stable systems and [S) is its image in G(l, 2),
while any Te GL,( 2 ) defines a transformation on IS] C X'XQ= "" (3.18)
G,(1.2) via X 1 x..2 "-
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Now, since [RP, + Q'RQP2] eGL(2) Proof- If RCS-'S, there exist S, and S. in S such
that

:VR R +QR P G (2 R,=ST S,. (3123)
lo XnL Now let

(3.19) Re = QS-'tQ' (3.24)

which implies that x 16 j as required to verify that XE S. which is stable since the congruence transformation de-
As such, an arbitrary stabilizing compemsator for our sys- fined by Q maps S-' to S and conversely. Moreover, smce
tem is of the form R = QRQ'X., Q-1,

The set of all representations of all stabilizing compensa- = QS - 'Q' = QS -'Q'QSIQ Q$I tQ,
tons in GLIA(2) thus takes the form QRpQ'S C GLI,(2).
Now, upon mapping this set into the Cassmnnian, we = (QS'sQ')(QS'Q') = QQ'S (325)
obui where S-QS'Q'ES. As such, we have constructed a

" [RQ'$] -QR,Q'[s], (3.0) stabld stabilizing compensator for R, as required.Conversely, if Re S is a stable stabilizing compensator
completing the proof. l for R,. then by the theorem, RC-= QR, QS for some SE S.

- Unlike the previous results given directly in tams of the As such,
-fractiona representation theory [91, [24] which arcilocal in R = QtJV$- Q = Q'R QQIS-IQ

nature, the presmt theorem yields a global description of Q

;he set of stabilizing compensators for a given plant. In- -(Q'RQ)(Q'S-'Q) =S -'S, (3.26)
deed, the required set is just a copy of the stable system in since the congruence transformation defined by Q maps
the Grassmannian transformed by the action of QRQ'. A e to Soe-' tandS iES-'o deS. b

It is interesting to compare the parameterization of the t
stabilizing compensators of the theorem with that obtained Of course, when the hypotheses of the corollary hold, the
directly from the fractional representation theory. Indeed, set of stable stabilizing compensators for Rf= Si-S, is
a little algebra with the results of [41 will yield the equality nonvoid and given by [S]VRQ'(SJ. No explicit para-

meterization for this set is, however, known nor is it
At = QRQ'W; WE W (3.21) obvious that one even exists. This intuition will be explored

further in the following section on the simultaneous stabili-
for the family of stabilizing copstors. Recalling. how. zation problem.
ever, that S = WE, this parameterization differs from that
of the theorem only in that the equivalence transformation iv. SIMULTA EOUS ST ATION
E has been deleted. As such, the set of stabilizing com-

" pensators of (321) includes exactly one representation for The key to our solution of the simultaneous stabilization
each stabilizing compensator rather than parameterizing all problem lies with a reversal of the analysis used in the
representations for the stabilizing compensators as is the derivation of the stabilization theorem. That is, one as-
case with the present theorem. Of course, sumes that RGE GL,(2) is given and parameterizes the set

of plants which are stabilized by R,. Denoting that set of
[QR,Q'W] =QRQ[W]-QRQ'[S], (3.22) plants by R,(R,), we obtain the following theorem. Since

the proof for the theorem is virtually identical to that
showing that the same set of compensators in the Grass- already given for the stabilization theorem of the previous
mannian is defined by the two theories. section, it will not be repeated here.
It follows immediately from the theorem that a stabiliz- Theorem: RP(R,)= QRQ'[S].

ing compensator always exists given that the plant is Since every TE GLh(2) is of the form T =QRQ' (with
modeled by an REGLA(2). In practice, however, one RC=Q'TQ), the lemma implies that a set of plants PC
often requires that the compensator be of a special form: G,(I,2) can be simultaneously stabilized if and only if they
stable. memoryless, diagonal, etc. As such, if IC] represents lie in a copy of the stable systems [5] transformed by the
the desired class of compensators in G,(l,2kit is necessary action of some 76 GL,(2). Indeed, this is the desired

- to design a compensator in [C] fQRpQ'[S], in which case generalization of the first-order example given in the intro-
.s. it is not clear that such a compensator even exists. In the duction to the case of a general linear system. In the
" case where [C] represents the stable systems, i.e., we desire general case, the Grassmannian plays the role of the A-B

to find a stable stabilizing compensator [25], a simple plane, the stables, [5], play the role of the half-plane, and
- criterion for the existence of the required compensator can, the general linear group, GL,(2), serves as the group of

however, be obtained as follows. "rotations." These observations are summarized in the
Corollary 1: A plant represented by Re GL,(2) can be following corollary.

* stabilized by a stable compensator if and only if Corollary 2: A set of plants P C G,(1, 2) can be. simulta-
R-'Sneouslv stabilized if and only if they lie in T[S] for some
I R f $-I$. TE GL(l. 2).
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Although the corollary represents a complete geometric As such, R, stabilizes the zero plant if and only if d,,Ej
solution to the simultaneous stabilization problem, it is not or, equivalently, RE S. The problem of stabilizing p with
amenable to convenient implementation. We therefore give a stable compensator is thus equivalent to simultaneously
an alternative algebraic solution to the problem in GL,(2). stabilizing p and the zero plant. Since the zero plant is

Corollary 3: Let RP C-A,(2), p E P be representations represented by I E GL,(2), it follows from (4.6) that p can
for a set of plants P C G,(l, 2 ). Then P can be simulta- be stabilized by a stable compensator if and only if
neously stabilized if and only if there exists a family of
matrices S.E S, p E P such that RP = (1) P = R' PE S (4.9)

SP .Sq =R"R ; p, qe P. which replicates the result of Corollary 3.Of course, a similar argument can be used to obtain an
Proof. If R, simultaneously stabilizes R,, p E P, then algebraic criterion for the simultaneous stabilization of a

it follows from Corollary 2 thai there exist S.E S. p E P set of plants P by a stable compensator. To this end, we
such that simply augment the set of plants P by the zero plant and

R ( then apply the theorem to P'= (0) UP. Alternatively, a
R, = QRcQ'S,; p E P. (4.1) geometric criterion for the simultaneous stabilization of P

- Hence, may be obtained by requiring that PC TIS] for some
TE S-1. Since the corresponding Rc is given by

R;'R= (QRcQS) '(QRQ'Sq) =S-'S. (4.2) Re= Q'TQ, (4.10)

. Conversely if there exists S. E S, pE P such that R;'R q = the resultant compensator will be stable.
* S-'Sq; p, q E P, then we let p' be an arbitrary plant in P Finally, the possibility of parameterizing the set of com-

and define R, via pensators (or stable compensators) which simultaneously
R= QR IQ (43) stabilize P should be considered. In effect, this amounts to

parameterizing the set of 2 X 2 matrices TE GL,(2) or
Re is independent of the choice of p'. Indeed, if p" is an T S- 1 such that PC T[S] which, in turn, requires some

-alternative choice, then since R -'R = kind of parameterization for P. In particular, if P = T[S],
I then Re = Q'TQ is the unique stabilizing compensator,

,.R(S.('R,.RS))= RR.S'.(.  (4.4) while the stabilizing compensators for a single plant p may
be parameterized by [S] as per the stabilization theorem of

. Moreover, for any pe P, R'.R, =S-,7S,: hence, Section III

RP = R ,.S 'S, = QQ'R -. 'QQ'S .Fg p.E

= Q(Q'R .S,Q)Q S, =QRCQ'S, (4-35)
Since the action of GL,(2) on G,(1, 2) is a geometric

from which it follows, via the corollary, that the set of invariant, one can, at least intuitively, say that the "shape"
plants PC G(l,2) is simultaneously stabilized by R,. U of T[S] is identical to that of [S], and every set whose

It is interesting to. note that in the special case in which "shape" is the same as [S] may be obtained from IS] by
P contains exactly two plants, say p and q, then they are such a transformation. As such, Corollary 4 implies that a

4 simultaneously stabilizable if and only if prescribed set of plants P C GA(1, 2) admits a simultaneous
stabilization if and only if P is contained in a subset of the

R'R $-'S (4.6) Grassmannian whose "shape" is the same as []. For

which is identical to the criterion of Corollary I to stabilize instance, in the example of Fig. 1, P must be contained in
a plant with a stable compensator. Indeed, this should not an appropriate half-plane.
'be srprsin since theaproblemof stabiind , ts slan ot Although well-defined coordinate systems do exist in the

*be surprising since the problem of stabilizing a plant with a Grassmannian, at the time of this writing we have yet to
stable compensator is completely equivalent to the problem formulate a computational algorithm for implementing the
of simultaneously stabilizing the given plant and the zero above-described simultaneous stabilization problem in any
plant [represented by R, = I G GL,( 2)]. This follows im- degree of generality. Interestingly, however, in the case
mediately from the definition of stability used in [4] or, where P is composed of exactly two plants (a two-speed
altematively, one may let R, I and motor or the dynamics of a swing-wing aircraft), a simple

d -frequency domain criterion for the simultaneous stabili-
Re= (4.7) zation problem was given by Chua [8], [16] and the authors

in the single-variate case, and has since been extended to
in which case the multivariate case by Vidyasagar and Viswanadhamri 19].. .

[RP+ Q'RQP - - - (4.8) To illustrate the above-described general geometric crite-
P" [0 d, rion in a computationally trackable setting, consider the

-. * . "



case of a set of third-order sinale-variate plants

___ '__. _ II \ \q
(5.1) =~l - \

s , + p, ,Is Po

which are to be stabilized by a proportional compensator K / " -

c(s) = t. To represent the class of plants geometricaily, we - = -
identify the six-dimensional space of such plants with a "- _ -

family of .hree-dimensional Euclidian spaces (with coordi- - - "
nates Po, P2, 2) parameterized by the numerator coeffi-

cients q0 . qj, and q2. As such, we have a three-dimensional .
famiy of three-dimensional spaces A34o.,.q). Of course, if (a)
there is no feedback (t -0), such a system will be stable if

- and only if •

Po-Pi>0  (52) t '

and % tI  "

P,>Poi P- (5.3) P./ -

independently of the numerator parameters. The resultant ' • . -
"'-' stability region for the 1= 0 case is thus as illustrated in >-... --

Fig. 3(a). D . .
In the case of a nonzero compensator, a similar argu-- - '' 1%"

mert with' the Hurwitz criterion will yield the set of """
inequalities,

"> (5.4) - -,

P2 
+ tq > 0 (5.5) .'

and (b)

SP, (PO + q)/(P2 + q2 ). (5.6) i

As such, for a fixed value of the numerator coefficients q0,
qj. and q, the new stability region is identical in "shape" VI. CONCLUSIONS

to the r = 0 case except for a shift of the origin to the point
(tqo, tq, tq:) in . as illustrated in Fig. 3(b). Of Our purpose in the preceding has been threefold. First,

course, as changes, the origin of the stability region moves we have attempted to exhibit the essential relationship
% along the line determined by the point (q regq1.q). Unlike between the fractional representation theory and the alge-

the : =0 case, however, where the stability region is inde- bro-geomitric approach to system theory. Second, we have
pendent of the numerator parameters, the line along which presented a global solution to the feedback system sta-
the origin of the stability region moves is determined by bilization problem. Third, a solution to the simultaneous
the numerators parameters. Thus, in this example, our stabilization problem has been presented. It should, how-
three-dimensional family of three-dimensional Euclidian ever, be pointed out that the solution presented for the

spaces Rl 0 ,,., plays the role of the Grassmannian, with simultaneous stabilization problem is mathematical in na-
-" The region defined by (5.2) and (5.3) in each such space ture and not intended for computational implementation.

characterizing the stable systems. Furthermore, the real At the present time, no computationally feasible solution
group (corresponding to the proportional compensators) to the simultaneous stabilization problem is knourt, except

acts on this space by translating the stability region in the in the case where P contains exactly two plants wherein a

space R3 along a line determined by the point simple frequency domain test is possible [8], [16] and in the
(qo, q,, q . simple low dimensional illustrated herein.

S "Although the above example was derived from basic
principles, we believe that it illustrates the essential geo- REFERENCES
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SIIULTANEOUS DESIGN OF CONTROL SYSTE'S

by

R. Saeks and J. Murray
I.. " Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

* I

ABSTRACT

The problem of designing a feedback controller unstable) stabilizing compensator for a given plant
which stabilizes a number of plants simultaneously is reviewed.
is discussed from the fractional representation

" point of view. An abstract solution of this gen- 2. SIMULTANEOUS STABILIZATION
oral simultaneous stabilization problem is present- AND STABLE STABILIZATION
ed, and an elementary, explicit criterion is given
for the simulteneous stabilizability of two systems. We consider the feedback system shown in Fig.

- Finally, some examples and counter examples are 1; this is characterized by the connection equa-
presented, and some open problems are discussed. tions

1. INTRODUCTION P

@1 pnClassically, in control theory one is given a c l V
plant and desires to design a control system a-

' round this plant which meets certain design spec- r u

-.ifications. In fact, however, a *real wrld* p ci
plant is never known exactly and, as such, a rea-
listic design must simultaneously meet specifica-

. : t ions over an entire range of plants which (hope- V 1
fully) include the actual plant. The simplest

*form of the resultant &4oumcu dui..n powbLi where
is the Aobu due4n ptbem wherein one desires
to meet the design specifications in an i-ball (2.1)
around a prescribed nominal plant. Although this I 0
is satisfactory for dealing with modeling errors it

4 cannot coe with plants containing unknown para-
meters and/or plants characterized by multiple
modes of operation. For instance, the dynamics of

& an airplane or rocket vary widely with altitude; : .To describe the dynamics of the plant atW
while the dynamics of an electric motor change with controller we use the abstract fractional repre-I csntrtoleory ofse ) the3] absrsacina esr

"4 speed and load. To cope with these problems w n
must formulate a i.putzneoua dc4Agn theo y in four sets
which one designs a control system to simultaneous-

"; " ly meet specifications over a prescribed set of =g h I '
plar.ts. Of course, the set of plants may be taken
to be a ball in which case the classical robustness where g is a ring with identity which represents

: theory is replicated. Alternatively, one may the general class of systems with which we wish to
choose to work wit.h a set of plants in which one or work, h is a subring of g corresponding to the
more parameters vary over a prescribed range and/ stable systems in 9, i is a multiplicative set
or a discrete set of plants; say, the dynamics of consisting of the elements in h which have inverses
a two speed motor in its high and low speed in 9, and j is the subgroup of h which consists of
settings. the elements of h which have inverses in h.

The purpose of this paper is to review the We assume that the plant P has a ri~ht-copim~e
I state cf research on the simultaneous design prob- fractional representation

lem including the derivation of an explicit cri-
terion of the simultaneous stabilization of two N
distinct plants and an algebro-geometric solution
of the general simultaneous stabilization problem. where the coprimeness is exhibited by
In addition, the fundamental relationship between
the simultaneous stabilization problem and the U N + V 0 I,
problem of designing a stable (or minimally
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and also a lef:-c.1orime representation Theorem 1: [ )

L L The set of plants stabillzabie by a comen-
with sator C Is precisety the set of stable plants

X U, 0 DL V transformed by left multiplica:ion by OR cQt

S IThis can also be restatec as follows: A set
SIt has been shown.C23" th~at one can then find UL  P of plan is simultaneously sabili.zable ifft. hhhP lies in an image of the stables under left awl-and V so that, in addition. tiplication by some elemnt of GLh(2).

VrU a UrV .These criteria. while geometrically appealing,can not be handled analytically; the following

Thus e plant P can be described by the matrix equivalent criterion is therefore useful.

D r -U L Theorm 2:C4 3

RP ( Let P be a set of plents reprsented by
N Rp, p c P. The the set P is simuitaneously stab-

ilizable 1Iff there exists a family of matrices

-.or i inverse p P. of the form (2.3) such that

V r U rp q p

SThe necessity of this condition is obviousfro (2.2). The sufficiency can be chocked by de-

the admissible input-output pairs(c p, V) for the fining
.lnt are then described by I t- RpV;1

Cp P0c p p

R f~or any p t P. and using the condition to check
P . that R cis well defined. Then (2.2) follows.

p- One can insert the mw€iurement that the cn

sa.i -pensator be stable merely by adjoining the zero
S.plant to he given set of plants - a compensator
- e cp s a kind of partial sate* for the is stable if and only if it stabilizes the zero

-lent P. plant. Thus the stable stabilization of n plants
simultaneously can be trpated as a problem of sim-

T. The corresponding matrices for the controller ultaneously stabilizing nrl plants. The converse,
711 be denoted by R€ and ScI etc.. although less obvious, is also true - see (33.

"" 3. THE TWO-PLAN'T CASE

r. I: can then be shown E33. r43 that a given con-
roller C will stabilize a plant P if and only if The only case of which we know.in which even

the analytic criterion in section 2 can be imple.
R OR w (2.2) mented is the case of two plants. In this case,

pthe criterion is as follows: two plants, with rep-
%iere 0 is the connection matrix (2.1). and W is of resenting matrices R1 an R ,, can be simultaneously

f for- stabilized 1ff there exist matrices W, and W2 of

11 el the forn (2.3) such that,
(2.3) I1W ~2  R1 ft2  (3.1)

isEl 15 ae 2x orsod o 2eZr iat ti seuvl
We note that, since the identity ft-matrix

.trx~f oefontsofh hih asan inverse whose to the condi.t~on that the "Plant" I htve a
ents are in h. It is easy to see that being of s s
. .- (2.2) is ecuivalent to being an element Stable stahilizing co mensator. (This is an x-

GLZ() whose (1,1)-element is in j, and that aple of :he converse mentone at the end of
,: in turn is eauivglent to being the ft-matrix section 2.) For the linear time-invariant case,
" a stable system. Thus in terms of the ft-matrix the problem has been solved by Youla [5). It is
'-resentation, we can restate (2.2) as of interest, however, to relate Ycula's solution
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to our approach. To this end, we denote R.
I R2 by EXAMPES: [4)

"-D -U Suppose given a family of plants of the fort

p ( s ) A *-

and restrict orselves to the scaler-input scaler- we would like to know when it is possible to stab.
o.tput case. it we write (3.1 in the form ilize these simultaneously by use of a proportlonl

WR .Wcompensator with gain t. In this Case the denoMt.
2  nator of the closed-loop transfer function is

and use the fact that the (1,1)-entry in each.of d(s) - .S + (B+A)
the i-matrices must be in j, we get the condition:

and so the feedback system will t stable 1ff"'
D + TH c for some t c h. B+Ta 0 0. Thus a set of plants is simultaneously..

stabilizable iff for some t, B+tA • 0 for each
plant in the set. Now each plant can be represeot.-

In the present case, this is clearly equivalent to ed a-a point in the (AB)-plane; in this rprese- "
requiring the existence of a stable, minimum-phase taton, a set of plants is simultaneously stabi- -:
transfer function which, at each closed right half- lizable if1 the set lies entirely above some
plane zero of N, interpolates 0 to an order equal straight line through the origin. The slope of
at least to the order of the zero of N. Continuity Such a line is -t, where t is the gain of a stab-

- and realness of the transfer functions show that a ilizing compensator. For example, the set in
necessary condition for this is that D have the Figure 2.b is stabilizable, while the sets In
same sign at all closed positive real-axis zeros of Figures 2.c and 2.d are not. Since the set of
N. Youla showed that this was also sufficient, stables in this case is the upper half-plane, this

gives a very vivid (although very special) illus-
O Thus to solve the problem of simultaneously tretion of theorem 1: a set of olants is simalta.-.

stabilizing two plants, it remains only to express cously stabilizable 1ff it is contained in a ro-

N and D in terms of the original plants. An easy tated (or more accurately, sheared) version of the
calculation shows that we can take set of stables.

K ~ Our second example is a counterexemple to" -Z 1  N102  the effect that even if every pair of plants in a
set is simultaneously stabilizable, the entire set

and D V1 D2 + U1K2  mey not be. To this end, we take a set consisting
of three plants {p,1 P,p2 ); here p0 is the zerowhere

wnere ~plant, and
R1 " P "nl/d1 I P2 "Z/dZ

1 Vl
1i ii ~ where n,, d,, n2dI and d2 are graphed in Figure 3.

It is easy to see, by using Youla's criterion, that
,Rz ,2] p1 and P2 each have stable stabilizing compensaors,

2 V2 and by using the criterion in section 3, that p1
and p2 have a simultaneous stabilizing compensator.

.O Thus in order for the plants to be simultan- Fowever, there is no stable compensator which sim-.
eously stabilizable, it is necessary and suffic- u1tneously stabilizes P1 and .,. If there were,
ien that V 6 * U K have the same sign a% all then by the criterion of Theoref,2 there would be

1 2 a stable transfer function f such that both d *
closed positive real-axiS zeros of N -1I - 2.  f r and d. + fn a r were stable and minimu-

Some calculations involving the coprimeness ton- n 1  n2  2

ditions show that this is equivalent to the con- phase. At the zeros of n1, di : 0 and so rI must

d-tion that 0;ID have the same sign at all be positive on the positive real axis. Similarly
closed ositi e eal-axls zeros of K201 - NID 2. r2 must be positive on the positive real axis.

This cives a criterion ir, terms of the transfer- Kowever, if we eliminate f we see that
.unctions themselves P3)R4). e

4. EXAMPLES A14D PROBLEM.S 2 1  1 2  2 1  2

The only case in which the geometric results and so, at the zeros of n2dI - n.Id2 , we must have

can be illustrated on paper is the case in which n r1 * n rZ. But at these points, nI > 0 and
there are only two parameters. For this reason our
first examnle will deal with this situation. n2 c 0, and so we get a contradiction. Thus poPI
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and pZ can not be simultaneously stabilizable. REFERENCES

It should be clear from the above that there 7. Desoer, C.A. Li, R.-w. Muray , J and
are more problems than solutions in this area of .Des , 'a ck Liue Desig, ury ., a -
research. At present, for example, we do not know R. Siaks, Feedback System Design: the Frac-
any testable necessary and sufficient conditions tional Representation Approach to Analysis and
for the simultaneous szabilizability of even three Synhesis," IEEE Trans. Autui. Contr., AC-25
scalar p lants. Thus as a first problem, we might (1980) 399-412.
sote: 2. Sacks, R., and J. Murray, "Feedback System

r :nsufficient ondtio Design: the Tracking and Disturbance RejectionProblem1:indnes staryladsuiient of N Problems," IEEE Trans. Autom. Contr., AC-26TV -te simultaneous stabilizability of N2) (1981) 203-217..

plants.

The following problem may also be of interest: 3. Vidyasagar, M., and M. Viswanadham, "Algebraic
Design Techniques for Reliable Stabilization."

Problem 2: If one knows that a set of plants can Report 81-02, Dept. of Elec. Eng.. University

be s=-Putaneously stabilized, how does one find all- of Waterloo.

compensators (or even some compensators) which will 4. Saeks. R., and Murray, J.. 'Fractionai Repre-stabilize the set? 4 akRadHra, ,"rc oa"Rpe
sentation, Algebraic Geometry, and the Simul-

_ _ Problem 3: Since stabilization alone is usually taneous Stabilization Problem," unpublished

not enough, can one fine conditions for the txis- notes, Texas Tech Univ., 1980.

tence of a compensator which,"ln addition to simul- S Youla; D.C., Songiorno, 3.3., and C.N. Lu,
tanevously stabilizing a set of plants, will also S inle,. Fedback S.b.,ain of Li,€ se mtostifys~eother Conditions (e.g. "Single-Loop Feedback Sta bilization of Linear
cause them to satisfy some Multivariable Dynamical Plants." Automatica,
track a specified input signal)? 10 (1974), 159-173.

* 5. CONCLUSIONS

We have discussed the problem of finding a
compensator which stabilizes every plant ina given
set of plants. In the abstract, both geometric
and analytic criteria have been given for the ex-
istence of such a compensator. However, only in

*very special cases, such as the case of two'plants,
can these criteria be checked. Another special
case, in which the geometric criterion becomes
particularly clear, is the case of first-order
plants with proportional controllers. We have also
given an example where pairwise simultaneous stab-
ilizabilty of a set of plants does not imply over-
all simultaneous stabilizability. Finally, we have

*) indicated some directions for further research.
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Signal recovery from signal dependent noise

* Rangachar Kasturi, Thomas F. Krile. John F. Walkup
Department of Electrical Engineering, Texas Tech University

Lubbock, Texas 79409

Abstract

* It is well known that the noise processes corrupting an image are in general signal-
dependent. An interesting aspect of signal-dependent noise is that there is a certain
amount of signal-information embedded in the noise. Most of the image restoration tech-
niques, however, attempt to suppress the noise terms to obtain an estimate of the image
and do not exploit the additional signal information contained in the noise. A simple
technique designed to demonstrate the potential for signal extraction from signal-dependent
noise is presented in this paper.

Introduction

An interesting aspect of signal-dependent noise sources is that a certain amount of sig-
nal information is embedded in the noise.' Although the signal dependence of the noise
renders the image restoration problem more complicated, better estimates should be possible
if the additional information contained in the signal-dependent noise is extracted in the
estimation process. In fact, in situations where the noise term dominates the signal term,

• the signal information present in the noise term may be larger than the signal term itself.
A simple technique designed to recover the signal from signal-dependent noise is presented
in this paper.

Signal recovery from Gaussian signal-dependent noise

Consider the image formation model2 given by the following equation:

0 R - cS + kf(S)N1 + N 2 . (1)

Here R is the noisy measurement, S is the signal to be estimated, f(S) is a function of the
signal, N1 and N2 are signal-independent, statistically independent zero mean Gaijssian ran-

2 a 2
dom processes with variances c1 and c2 respectively, and c and k are scalar constants. In

* order to simulate the "worst case" situation, we let c-0 and k-l in Eq. (1) to obtain

R = f(S)N 1 + N2 . (2)

*-. this nodel, all the signal information is contained in the signal-dependent noise. In
:his s.'t.ion, estimation of the signal is possible only by exploiting the signal-depen-

dence of the noise. The mean, UR, and the variance, c2, of the observation R are given by

UR a ECf(S)N + N2 ] a 0 , (3)

a.nd

a2 ., £[(Ru ) 2]1
R

E s (f (S)) 22 + 2 (4)
1 2

,--t each observation point we may treat the signal S as an unkncwn constant. Ther. the vari-

a.ce of R conditioned on S s is

2 2 (f(s)) 2a 2 +  2
R'=s 1 2(5)

-hen we have

1 " 1 , ; ' = -1 262
f_* P-,3~ ':2 (6)
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Thus when the function describing the signal dependence has an inverse, an estimate of the

signal, j, may be obtained by estimating the variance of the noisy observation, 2,. . RIS- s

and a knowledge of the parameters of the noise processes. In particular when

f(s) - sp  , (7)

where p is a known non-zero constant, we obtain

s - 2(8 )

An estimate of the variance of the noisy observation R may be obtained by assuming the ran-
dom variable to be ergodic on a local basis and using a spatial window of size M x N cen-
tered around the pixel being estimated; i.e.,

;2  l r 1 2(9
Ritj M12 k 1 (+k), (j+l) R'jJ(9)

where

M E r (10)
R ij M 2 k 1 (i+k),(J+l)

Here the subscripts ij represent the coordinates of the pixel being estimated, ri,, is

the noisy observation at ij and the summation is carried out over all the pixels in the
estimation window. In order to reduce the effect of spatial smoothing it is desirable to
keep the size of the estimation window small. A noisy image obtained when the observation
model of Eq. (2) is applied to the original image of Fig. 1, with f(s) -I is shown in
Fig. 2. A constant background has been added to this image so that the resulting gray
levels are all positive. (This constant background, however, will not affect the estimate
obtained as the estimate is based on the variance.) The image extracted from this noisy
observation using the estimation technique described in this section is shown in Fig. 3.
This restored image indicates that the estimator is successful in recovering the gross
structure of the original image.

The estimation technique presented above is not limited to the wworst case* imaging
situation discussed here, and has been extended to situations when the signal embedded in
the noise is only a part of the total signal information.3

Signal recovery from Poisson noise

Images formed at low light levels are corrupted by noise associated with the discrete
nature of the photon counting process. Such images are well modeled4 by the equation,

where P(XS] represents a Poisson process with ).S as the parameter, and R and S are the

noisy observation and the original signal respectively. The scaling factor i is used

to make the mean of the measurement R and the mean of the signal S equal to each other.
::ote that in this model the noise is inherently signal-dependent. A noisy image obtained
from the original image of Fig. 1 using this model is shown in Fig. 4. When an esti-ate
of the signal is subtracted from the noisy observation, the residual noisy imace still
contains signal information. As an example, consider the difference image, R., obtained

by subtracting the original signal S from the noisy observation R of Z;- (1i). This
i.ff erence signal is given by

RD P -p(s2 - s (12)

The mean and variance of are given by

E: - (XS - 1 0 .13

-~~~f -A .. - -
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and

-2  =El 2 14
aD E[(XfS)_SUR ) (4RD 0

As before, if we treat S as an unknown constant equal to s, we obtain

-(15)-- D

Thus an estimate of the signal, s, may be obtained by using the relationship

1;2 (16)
JLRD

where a2 is an estimate of the local variance of the difference image obtained using RD forRD

R in Eq.(9). 7he residual image obtained from the noisy observation of Fig. 4 is shown in
Fig. 5. The estimate obtained from this difference image is shown in Fig. 6. This restored
iage demonstrates the ability of the estimator to extract the gross structure of the orig-
inal image by making use of the signal information contained in the signal-dependent noise.

Sianal Estimation from Multiple Observations

- In some instances, such as television or movie imaging, multiple looks of a given object
- . or scene are available. In such cases we may estimate the object over an ensemble of sample

functions, instead of estimating from a single observation. Such an estimate does not suf-
fer from the spatial smoothing effects that are present in many of the image estimation

-- techniques. As a result one may expect a higher spatial resolution in restored images.
Further, when the noise corrupting the signal contains a signal-dependent part, it is pos-
sible to obtain a second estimate by recovering the signal from the signal-dependent notse
term. These issues are discussed in this section.

*Consider an ensemble of noisy observations {Ri; i-l.2...M) obtained when a signal S is

degraded by a set of statistically independ*nt noise terms Nli and N2i, with

Ri - S+f(S)Nli+N 2i, i-l,2,...M. (17)

If the noise processes are modeled as zero mean processes, then an estimate of the signal,
§, may be obtained by finding the sample mean over the ensemble at each pixel, using the
equation

r R~

M Wen such an estimate is subtracted from each of the noisy observations, the residual images,
i' consist mostly of noise terms as given by

RDi a f(S)Nli +N2i (19)

Using the procedure described earlier, an estimate, SN, may be obtained from these residual

images. Thus, if a represents an estimate of the variance of the residual images at a

given pixel, and if a1 and a2 -are the variances of the noise terms N1 and N2 respectively,

then an estimate SN is given by
R 2

f- / 1 (20)

&2¢ 2  (201)
where
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" ote that the variables in Eas. (17)-(21) represent the corresponding quantities at each
oixel location and the sane estimation procedure must be a;plied to each pixel to restore
the entire image. To evaluate this estimation prccess, independent Gaussian noise samples
were added to the original image of Fig. 7a, resulting in the four noisy images shown in
Figs. 7e-h. The restored image obtained by finding the sample mean at each pixel is shown
in Fig. 7b. The residual images obtained by subtracting the image of Fig. 7b from each of

D the noisy observations are shown in Figs. 7i-1 (as before a constant background has been
added to these images). The restored image obtained when Eq. (20) is applied to these
iages is shown in Fig. 7c. Note the remarkable detail visible in this restored image even
when the sample size is as low as four. The signal recovered from each of the difference
images shown in Figs. 7i,j,k using the spatial signal recovery techniques described earlier
are shown in Figs. 7mn,o. The estimate shown in Fig. 7p is the pixel-by-pixel mean of
the estimates shown in Figs. 7m.n,o. The signal information may also be recovered using
higher order moments. As an example, the restored image obtained by estimating the fourth
moment of the difference images and other appropriate equations is shown in Fig. 7d. As
expected, the use of multiple frame observations has completely eliminated the spatial
smoothing problem encountered in single frame estimators. Further, these simulations have
indicated that excellent noise suppression and the recovery of good quality images is
pcssible even when the sample size is small.

ConclusionsN: The potential advantages of the procedures described for recovering a signal from sig-
nal-dependent noise have been discussed in this paper. It has. been shown that it is pos-
sible to obtain a fairly good estimate of the signal even when all the signal information

>present in the observation is in the form of signal-dependent noise. Modifications to the
estinatcrs in order to recover a signal from multiple frame observations have also been
presented. Although the techniques described are applicable to only Gaussian signal-de-
pendent noise and Poisson noise, it is possible to extend the same principles tc other
types of signal-dependent noise, such as magnetic tape noise and reverberation noise.
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CO1.M. IN PARTIAL DIFFERENTIAL EQUATIONS, 8(6), 643-665 (1983)

* OTHE GEOMETRY OF SECOND ORDER LINEAR

PARTIAL DIFFERENTIAL OPERATORS

Gregory A. Fredricks

Department of Mathematics
* Texas Tech University

Lubbock, Texas 79409

Texts on classical partial differential equations (e.g., Gara-

m • edian [6,p.57] and Courant and Hilbert a2 ,p.155]) always develop

the well-known theory of canonical forms for second order linear

partial differential equations in two variables. This micro-local

result gives necessary and iufficient conditions for the reduction

of the top order part of the equation to constant coefficients.

The purpose of this paper is to investigate two macro-local prob-

lems on the reduction of the top order part of a linear partial

differential operator to constant coefficients.

Section 1 contains the preliminaries and leads to statements

of ehe two problems on the geometry of linear partial differential

operators. The general results concerning second brder linear

-- partial differential operators are given in Section 2. Section 3

is devoted to some consequences of the theorem of Cotton, while

Section 4 contains some miscellaneous remarks.

I27
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FUDRICKS

Section 1: Preliminaries

Let 4 be an n-dimensional smooth manifold and let F(M.p;RM)

den&t* the set of smooch maps from M to I which are defined In a

neighborhood of pc. If (z,U) is a chart of M, pcU, and

* -(Cv .... *a) is an n-tuple of nonnegative integers, we define

.f/Z (p) for each ftF(N,p;R) by

. (1. .) fiix(p) - D(fexl)((p)),

where DO denotes the usual partial derivative in 
. If

t(,-,O), then D aX$. "Define j0-4 1+-.-a and a I -a-..n'.

For each nonneative integer r, we say that f, ScF(M.p;Rm are

r-,e: equivalent if for some chart (x,U) of N for which pcU we

have

(1.2) af(I)/axop - 381/3z (p) for a. , n lsr.

It follows from the chain rule that (1.2) is Independent of the

chart. The r-jec equivalence class of fcF(M,p;R') is denoted by

jf(p) and the set of all r-jet equivalence 
classes in F(M,p;R )

is denoted by Jr(M,p;RU).

The set jr(M,p; R) has a natural vector space structure inher-

ited from F(Mp;R2) and Jr(M;Re) _ U Jr(Mp; Rm) has a natural
p rM

r
manifold structure which makes J (M;Rm) with its natural projection

onto H into a vector bundle. -We also consider jet bundles with a

fixed target by defining

' - rf(p)IfcF(K,;R.) and f(p)-).

A :' ,

4'.°

-" " " "- " " .' - - -' " - " - " . . " , ," - " - , ' , . . , ' -: L : ,,27 6 -. , a , , .



LINEAR PARTIAL DIFFERENTIAL OPERATORS

Proceeding as above, we obtain the vector bundle J (M;R M,O) over H.

The case mrl is of special interest. The dual bundle of

Jr (M;R,O) is the r-th order tangent bundle Tr (M) of Pohl [L]. Sec-

tions of Tr (M) are r-th order partial differential operators on M

O (without constant term). In fact, charts of M induce local bases

of sections for Jr(M;R,O) and T r(M) in a straightforward way. If

(x,U) is a chart of M and if x -x l1...X n, then the maps j x

for O<jajr, defined by

Srx (p) _ jr((x-x(p)) )(p) for pCU,

rform the basis of sections of J (M;R,O) over U. The dual basis of

sections of Tr (M) over U is

I(/n!) ao/axe I0< 1 L__r).

r r
In a similar fashion, the dual bundle of J (M;R) is T (M)CI,

where ± denotes the one-dimensional trivial bundle over M. Sec-

tions of Tr(M)OS are r-th order partial differential operators on

M wilh constant term.

We will now show that charts of M are equivalent to the exist-

* ence of integrable, local sections of a certain fibre bundle. Let

RF(:i,p;R n) denote the subset of fEF(M,p;R n) which are regular at

p, i.e. for which the nxn Jacobian matrix of f relative to some

(and hence any) chart of M near p is nonsingular at p. Let

Rjr(M,p;Rn .0) I {jrf(p)EF(M,p;Rn) and f(p)-O}.

The set RJr(M;Rn0) = U RJ (M,p;R ,0) has a natural manifold
pEM
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struc:ure which makes R-1r(M;Rn,C) with i:s natural projection onto

M into a fibre bundle. A section s of Er (M;R 0 0) is integrable

if there exists a smooth map f: H-el n which is regular on M such

that

s(p) - j (f-f(p))(p) for each peN.

We will denote such a section simply by jrf.
r

Note that if (x,U) is a chart of M, then j x is an integrable

section of RJ r(M;Rn,o) over U. In fact, if one identifies charts

(x,U) and (y,V) for which U-V and x-y is a translation up to order

r, then there is a natural one-to-one correspondence between charts

cf X and incegrable, local sections of LJr(M;Rn,0).

We have already seen how a chart (x,U) of M, i.e. an integrable

section J rx of RJ (M;In,O) over U, induces a local basis

{/xI1O,<Jinr) of sections of Tr(M) over U. These local bases are

called.coordinate frames for Tr(M) over U.

Suppose now that s is a section of RJr (;Rn ,O) over U. For

each pcU and each a with O<ljr, define

(1.3) X (p) _ 3/axa(p) if s(p) , rxcxp).

The zaps {X aO0<inL.r} form a local basis of sections of Tr () over

U. Local bases which are induced from sections of Tr (M) over U in

this manner are called aeneralized coordinate frames for Tr(M) over

U. Note that generalized coordinate frames are induced by smoothly

varying ser-s of coordinates.

Coordinate and generalized coordinate frames for Tr(M)OIL,

-r(M;R,O) and J r(M;R) can be defined in the obvious ways. Because

2-8
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LI;EAR PARTIAL DIFFERENTIAL OPERATORS

* of our interest in partial differential operators, we will only con-

sider these frames for Tr (M).

Since the geometry of partial differential operators is in

the top order symbol, we can now state the two main problems on

"reduction to constant coefficients" in the top order part. Let P

be a section of Tr (1) and let U be an open subset of N.

Problem 1: Find necessary and sufficient conditions on P and U

for the existence of a coordinate frame {B/Bxo) for Tr (M) over U

and b cR for which

P b a lxc+--" on U.

The symbolism "+"*" means plus lower order terms.

Problem 2: Find necessary and sufficient conditionu on P and

U for the existence of a generalized coordinate frame {X,) for

Tr(M) over U and b cR for which

P I b X+" on U.

Note that the order of X is defined in the classical sense. Thus

we see that the order of Xa is Icl, but that X may also include

lowir order terms.-

Since these problems are macro-local in nature, we will con-

* sider M to be an open subset U of Rn. The following consequence

of the chain rule is useful in translating these problems tc prob-

lems in linear algebra and differential geometry. If (X C is a

generalized coordinate frame for Tr (U) induced by a section s of

L Ir (U;R n,o), then for each pcM and O-clIc<r we have
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D (p) = -
)  (p)

r
where s(p)-j x(p). Note that equality also holds in the preceding

line if one sums over the indices O<10.r. Thus, if P is a section

.*. of T (), say

P . Da on U,
Oui-ir .

with a: U-R swooth, then

* (1.4) p 0, a2e U.

where g U-R is defined by

ii(P ( i) Da(x)(p) if (p)_jr(p).

Section 2: General results

It is convenient to use a different type of notation while con-

sidering Problems I and 2 for second order linear partial differen-

tial operators on an open subset U of Rn. Let e denote the

standard unit vectors in Ra and define

Di= . and D -D for ij-l,.. .,n.
sjio

In a similar fashion, we define 3/ax and a/ax for a coordinate
i ii

frame {a/ Ix for T
2 (U), and Xi and Xt for a generalized coordinate

frame {X for T 2 (U).

Suppose now that P is a second order linear partial differential

operator on U. Then P can be written uniquely in the form

(2.1) PO a i + aoD on U,
ij

itej i i -

230
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LINEAR PARTIAL DIFFERENTIA.L OPERATORS

w 'here a ij'a i: LJ.R are smooth functions and a~j-a , It follows from

(1.4) that if {Baxa I is a coordinate frame for T 2(U) and

P- b 1 kiaBk + Z b k a/axk onl U,
k, k

with bk- bik then

bk E~ aiJDix.kDjx on U for k,t1,"-,n

*Thus the second order coefficients of P transform tensorially

according to the matrix equation

Dx A tDx - B on U,

where A(i J),aij. Bk) inbk and Dx is the Jacobian matrix of the

coordinates x. Given the symmetric matrix A with smooth entries,

this equation is solvable for coordinates x on U and for a constant

matrix B if and only if it is solvable for coordinates x on U and

a constant m~trix of the form

*with p l's and q -l's, where p and q are nonnegative integers with

p+q1n.

Thus we have

Probem1 r-2): Find ncesaryand sufficient conditions on Pin

(2.1) And U for the existence of coordinates x on U and nonnegative

inregers p And q for which

(2.2) Dx A t D B pqon U.
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2if iX is a generalized coordinate frame for T (U), then we obtain

the relationship (2.2) where the coordinates x are germs of-coord±-

nates which vary smoothly on U. Thus we have

Problem 2 fim" Vind necessary and sufficient conditions on P in

(2.1) and U for the existence of a smooth map G: U-GL(n) and non-

negative integers p and q for which

(2.3) G A tG - B on U.
p,q -

Note, from Sylvester's Theorem, that a necessary condition for

solving (2.3) is that A has p positive and q negative aigenvalues

at each point of U. Under this assumption we have (see 53 for

b* - more details) that

E {(u,&)eUxGL(n)I i A(u) g - B p}

is a submanifold of UxGL(n) and that (E,z,U), with w denoting the

obvious projection of E onto U, is a fibre bundle. Since the de-

sired map G is a section of this fibre bundle, we can guarantee

the existence of such a map by assuming, for example, that U is

smoothly contractible (see Steenrod 9,p.531). Hence we have

Theorem 2.4: Let U be a smoothly contractible oven subset of R
n

and let P be iven j (2.1). There exists a Seneralzed coordinate

frame {Xo } for T2 (U) for which"

p P+q
P - .E X on U

282

.............. .



0

LINEAR PARTIAL DIFFERENTIAL OPERATORS

if and only if A has p positive and q negative eigenvalues at each

point of U.

To solve (2.2) we need a smooth map G: U-oCL(n) which satisfies

(2.3) and for which there exists a solution to the system

D xi = g.j on U for i,j-l,...,n,

where G (i,j)gij. From basic existence and uniqueness theorems

for systems of first order partial differential equations we see

that local solutions exist if and only if

D k ij Dik on U for i,j,k1l,...,n.

If the matrix A is nonsingular on U, i.e., P is nondegenerate on

* U, then the preceding "integrability conditions" can be written as

curvature conditions on A. (See Spivak [8, ch.4D] for more de-

tails.) Recall that the components R ijk of the Riemann curvature

tensor corresponding to A are defined for i,j,k,1-l,...,n by

Rijkt (Djk'i9+Dit ik -Djtik Dik ji )/2

- + s a ([it,s] [jk,t]-[ik,s] [jt,t]),
s~t. st

where A , aij and [iik]=(Doik+Di k-Dkij )/2.
(i,j) ij

As in the macro-local theory of canonical forms for second

order linear partial differential equations (see Finn [4]), the

"integrability conditions" are sufficient only on certain domains.

I * The Poincar6 lemma with compact supports can now be used to obtain

the following macro-local version of a theorem due to Cotton [1).
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Theorem 2.5: Lqt u be a smoothly contractible open subwt of

-M s ube *1 aL I U glmato cm j tha t exist

£ £MKjhaM km (3/3aj TZ(U) In hic

-k : ;=d Z +. ., U
z 1 jp1 3x aU

IL~ E& MJ A hIL p p1S1!!y .&SWZ*AtII M hu 902 W bftr
£&&."Sat* 0 ghLU6 'Ih .L m Alasm curvature

sinmm correspondig to A vsmal on i.

sio2 n: Conus"E 2f am aorm 1L cotton
We will assm throughout this section that 0 m U are open

Subsets eof a witrh the properties Stated in ramorms 2.s. Nort (son

Lisauart ij. p.211) that, due to vaous relationships between

the compesesto &,,j., there are a (a -1)/li conditlons to the -

vanishing of the Rismmon curvature tensor cottesporm iil to A.

We now begin a study of the case U0., where we have a sinale

vanishing comdition on the curvature, namely, ,2M-0 on i. Cow-

eider

(3.1) P a aDi+2bDU+cD2 2 .dDi. iD 2 on U,

where a,b,e,doe: 4 are mooth, md seam that P is nondegenerate

a on. we have

A _[ ,, d !M J.t A-7.

A calew ulin shove that 1 1221 vaishes on U if and only if

'd

.1?
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2Ylj-4AlG2ia4%(Ial'2-alYl7*2 )+c(26 I222-yl 2

(3.2)
4b(c 12- 21r145 1 1-2 1 ,y-2s 2 )-0 E U,

where we have used f I and f I to denote Dif and D1 f. respectively.

SExamination of the elgenvalue condition now gives the following

consequence of Theorem 2.5.

Theorem 3.3: For P aiven in (3.1), there exist coordinates (x,y)

on U for which

(a) P - D/2 + 3lay2 +. onU;

(b) P--/ax 2 -  y + .-. on;

(C) P- 3a3 2  alY 2 + . . . oU;
40

if _ rf (3.2) holds &, respectivel,.

(a) detA- 0 on anda 0 0no 6;

(b) do A on0 aUnda 0 0 ;

(c) de A 0 on U.

Ue remark that, although condition (3.2) is rather long, it

Is generally much easier to check this condition in a specific

exmple than It is to try to find coordinates which may or may not

exist. This remains true even for nor6 variables, where we may

have a large mmber of conditions similar to (3.2).

* Instead of using Theorem 3.3 to obtain results about specific

operators P, we will assume that P has a special form and then

apply Theorem 3.3 in that situation. For example, letting Sn de-

note the sign function, we have

-. ,28'
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Corollan'l 3.:~?a~ 224* a with a and c nonvaniahint

In U. S3 M skiat eijst coorinesi Cxy) 21 U InL vUiSh

P - apa(a)3/Ix 2 + ean(c) a/ 3y2 +_. U

AL MSSif~z

3a 3c I +3c3 m2 2_2a3 ci-2&c3au227ca Ic I -aCI2c 2 oaO

Ca3USa ..J1:Z UZ PfADII4.bWl... -- 6vA b mhhM a 0,
them Q=n shasj coningto (z~y) U In whih

p . 3/x3/7 +...

L Md auz If

Zastoud of saasa asiiar "mest fT various fera te o per-

store P. w4 will CeONCeUato on atuacteo where the Immeral so-

Intl"n to the nOw.mw partial differential equtIo (3.2) can be

found.Fo Vemple. letting y2 wli22 web

*0.lar 3~aL .1: U PwaV2e- a - wl a muiSaM aM , an
Jamsaw u sa shmi (z,Y) JM V in-*u

P a $t()CShi4/~~,. a -

AL M & L 72(lAIaI)u a 0 .

The proof entails lettlag. ac to Corollary 3.4 and noting that

2a 3 (as ia 4u- 2 2
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SLnce every bounded harmonic functlon on i2 Ls constant, we

obtain the followung result.

oroU Y 3.7: If_ PoV+'-"on 22 vith a novenshLns and bounded

on R2 , tbm there je Mt exist coordinates (Zy) o, R2 in vhich the

top order part o P bas consrtnt coefftcLents unless a Ltself Is

constant.

A result siaLtar to Corollary 3.6 can be proven foro-D l-D 22

by noting that

* 2a 3 (auU-al 2-a2ift22) w 2&5 C3 (LnlaJ)

and then usLu Corollary 3.4 to get

Corolla" 3.8 J P-a C3 with a aw onv ahns onm then

there zLse .o.hme (s,y) U lIn which

p . n/jx2-/S2+ -'' o U.

~sot lutmem f je I for which

tna(u,v)i * f(u4v) +g(u-V) for each (u,v)CU.

*• Here we use (u,v) to denote the cmonical coordinates on R2 . A

sLple consequence of Theorem 3.3 (or Corollary 3.5) Le the

Corollar": If P-Dl1 +2Dl 2+ .. on U, then there exist coordinates

(x,y) on U for wh~ch

, - a/ax 2-a/3y 2+.. on U,

* 2M

U q -. ~--* -. *. .- .... N
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a(u.V) w f(v)u 43(v) In sAuk CU.V).

noe seat result foil.. m slaes 3-3 after uatIft that

2 2bbea/azb - tiay 2/

tir ma f"dlaa its ) Zu a

Us amules e fial. consuquence of Theores 3.3 became of Its

relattowbip to Laplace's Operator s polar ooordiaates.

ima gal a~ an Akin kMu MUM (X-7)~1 a In

C(U) *(W-t)2 Ini ts

V*amse consider m higher disagslmmal results. Since the

N , ~mo~er of conditions for the VORIhMug Of the ceOMPeRMts a k

2W8

**e*.* **10r,
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Increases rapidly as a increases, results slailar to those already

given In this section become harder to obtain as n increases.0
To get an Idea of the conditions involved in the Riamann tensor

we will state only one result in three dimensions.

Theorem If PeaD 1 bD22+cD3 3+** on U With a,b,c nonvanishing on

* U, then there exist coordinates (x,y,z) on U for which

P - sen(a)3/az 24msgn(b)a/ay 2+sgn(c)a/3z 2+ ' - on U,

If and oyif the following hold o 6:

a bz ab&a 2b2-3b3a2 2+2&b322 -33b1 + 113hbll-ab"3b3-O

a2calb1 +ac 2a 3 c3 -3c 3a 3 1+2aca 533-3& 3C1 2+2a cc 11-abca2 c2O-

b2cb2 c bc 2bc3-3c 3b 2+2bc 3b33- 3b3 c 22 2b 3 cc 22-abcb 1=O

2abca2 3 +ba 3 c2 +ca 2b 3-3bc&2 3 -0

*2abcb 1 3+abb 1cibca~b1 -3acbPb-C

2abcc liftcb Ici4bca 2 c-3abc Ic 2 0.

Since we will now turn to results which are true In n dimensions,

we will temporarily cease using subscripts to denote partial deri-

vatives.

Lot ul,....un denote the canonical coordinates of Rn. Note
that if nv2 and Aodiag(a,..., n ) with each a% a function of %

alone, then [iJ,k)mO for Iij or i ik and 111,L] - (1/2a)

-- 289
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We now sme that Rak mO for all i.J,k,, and hence have the folloving

cousequece of Theorm 2.5.

ouW ,: PaD U* 4'a uD '" ." EU i h ,,...,, 3  ,-

*,%D* Withkhl,~MWANu _0p 0 .d Meuk %.!_ fVMeCtso gj %, al. U p JU Lbe

!Wkff~~ ~ 11 nw 2 30 on i, then there exists &_coodinat

um (3is- Io TlA(u hich

Lai

In Corollaries 3.6 and 3.8 we consmdered Pua2 " a

Pua 0+...., reepectlvdly. The corresponding cases In hisher di-

uensions are covered In

81 .o 06~ A dIa, * * * in iml IMin- IL
Pu(d u +... 440D)+... &O11i=ahXnaum IM l. QM her

i& coErditaez (8l1 e ) aL T2 (U) k9L5.ls

p a sp(a)(a1 S/ I A.-443/3hx.)-... on U,

M 8id o AL Ia a m .I in AL .0 L ollow", Lot EU:

to ,. (-,.)] : a [ O qu*4s ] 2,

ub resa, tm(t1, ...'t )9 1 *a qO(q1, ... equ)CR a w~hich satisfies

a 2

Sote that the cmnitions ta the cases p-a av4 ;-0 are that a

Is constant or has the foern rju-tj4 on U, where rcR and tLUE.

290
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Letting T .Dll+.. .4I, WO nov have the following higher dimen-

uional anailog of Corollar 3.7.

* Corollary: If Pma02 1Il. on Rn with u3-2 and a pnvanIshlao

then there does not exist a coordinate kJm I/Dz) for T2 (l') i

which the top order part of P has cosatcoefficients unless a

Itself is constant.

Also note that if XL denotes the Lorentaisa distance function,

then the condition In the case p-n-l of Theorem 3.9 Is that a Is

of the form ('qU-4sj2 * where stR and q is in the light cone

centered at the origin, or a is of the form t(P(u,t)]6 ., where VRa

and the light cone centered at t does not met U

We conclude this section with the

7vPoof of Theorem 3.: Since Am& diag (619-.96 a n

A71- diag (6l,... 96na)/a, it follows that (ijkJuO if i,J,k are

* distinct. One can nam easily shew that R -0 if i.J,A areijk
distinct. Returning to the use of subscripts to denote partial

0 differentiation, direct calculations show that

3 2 ' 2~ aa 2

and

.1 34a Ri1jit"Y2" ,,-a ja L If 1,J,L Are distinct.

* .Due to the various relationships'between the components R ijlwe

* see that the curvature conditions in Theorem 2.5 for A are

-i%
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an, for Icj..
It

(3.11) 
2a 

sad 
e-y

ge am seem t ha o0 an and note, In ths case, that (3.11) Is

equiva.lent chen o I u . Uwen* this holds o all IcJ, it

follows by inteation that (3.11) holds for a3 if and only if

there eist smooth fuactoie fu of % aloe such that

a~u) a I Z __U. 12

NMI.
(3.12) cI [£ 4 J o if[f

(312 j~:L ,ji - Ia%)j in 4.

ws amw see that 84" ** es i and he=*, since each 'S

Is a inaiction of % alone, it follow that

*(3.13) G£ I f 6 af a 2r,

whore rel.

If r4 * thaft* f is a linear function of ad It follows from
* a

(3.12) that a(uWm('cq,934o) o i. whees *t and cO1 which satisfies

the coedIclee j~vft IS the statmon: of the theeron.

Assum am that wrO and mote from (3.13) that, for each

909-,210 there saint % Y", such that

f 2(u) *~~~ +[oU~~~t4n] on U

It nov follows Lion (3.12) that Z sm0 and hence we sea that
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2 2 2a(u) r a aZ (Um-ts) Ion U.

If a-4 on U. then I&13'@ on Uand the preceding proof gives the

desired result. ~ ~ mkte ic h o re

In concluding ti etow eakta ic h o re

part of P in (2.1) transfom according to a formula which Is In-

*depend ant of the lowe: order coefficients, the results of Sections

2 and 3 also hold for quasi-linear operators.

Section 4: miscellaneous remarks

* The higher order cases of Problems 1 and 2 are much more

difficult. In the case r-3 we sea that if P Is a third order

linear partial differential operator on an open subset V of Rn,

PF Z a1  D +*. oU,
iLj~kjk uk

with a * U. smooth and symmetric In its Indices, and If

for a coordinate frame (3/3% a for T 3 C) with b AM ymetric In

Its Indices, than

bo a I1 aDsLj D jx aDkx U n"'u*. n
'" i~jkiii nk

As Ia the case r-2, ws now sea that if

*A - I aljk CIi Ck

S 293
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is the symetric cubic form associated to P, then Problem 1

(respectively, Problem 21 for t-3 can be stated as finding necessary

and sufficient conditions for the existence of coordinates x on U

[respectively, a Smooth map G: U-*L(C)] such that

Ox A - 2 (rsectively, G A a ) on U,

where I is a real symetric cubic form and the operation on the

left is defined poistuise as the usual action of GL(n) on the

.4* ISpace of real symmetric cubic foamo. We therefore have the

obvious aecessary condition on P chat the real symnetric cubic

form Au) for each ucU belong to the sams orbit of this action of

GL(). Note that this condition ts very strong, ince it is ell-

known that there are an infinite number of such orbits. Ue

suspect, however, that if U is smoothly contractible, then this

constancy of orbit condition Is neces ry and Sufficiet for

solving Problem 2. as ia the case r-2, a solution to Problem I is

' provided by a solution 6 to Problem 2 which satisfies the usual

integrability conditions. Transferring chee integrability con-

ditio s to conditions on A in certain "generic" cases Vill In-

volvo the vanishing of sae type of "higher order" curvature.

The preceding remarks carry over in the obvious way to the

cases " 3. Te remark, however, that the general probles of finding

invariants which detenmLne the orbits of the action of CL() on

the space of real symetric r-11near forms is scil open.

Finally, we remark that bne can consider the problems of

(total) reduction to cov8stnt coqffficients by canging "Jai-r" to

"O.,lijr" and deleting " in Problem I and 2. In IJ. Cotton

294
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considers this version of Problem 1 in the case r-2. To illustrate

the form of these new problems, one can proceed in the case r-2

as in the beginning of Section 2 to obtain

Problem ': Find necessary and sufficient conditions on P in (2.1)

and U for the existence of coordinates x on U and bk,bkicR for

which

b - Djx oU for k,t=l,- .,n, and
b k a E a ij Dixk on U fa

i~j

(4.1) bk a I aij Dijx.L + r a, Dixk 2n U for k-l,-.-,n.
k isi i , i

Problem 2': Find necessary and sufficient conditions on P in (2.1)

and U for the existence of smooth aps eij &ijk: U-R with

gijk . gikj and det(Sgj)# 0 on U and bkbk1tR for which

bkL - Z on U for k,-l,-'-,n, and*k iJ i  k£ t1J- --

(4.2) bk a I aij 5 klJ + E s g.k on U for kil,---,n.
k i4 1 ki i gkL

There are several ways to approach these problems. The

O approach to Problem 2' is to find a solution G-(g1 j): U-R to Prob-

lem 2(r-2) and then solve the system of equations (4.2)- for the

unknown functions gkiJ" Since this is now viewed as a system of

n equations in n( 2 ) unknowns, we expect that solutions exist to

Problem 2' under very mild conditions. The first approach to

Problem 1' is to seek solutions to Problem 21 which satisfy the

integrability conditions

D Dksij D Di ik Sj n om4• Dkgt = Djgi " ijk on I' fo_. i,j,k-l,...,n.

0

0, 295
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The second approach to Problem 1 in to find coordinates x on U

whiLch solve Problems 1 (r=2) and check to see if they satisfy (4.1).

mote, herer, that the bk's are uniquely determined by P and the

coordinates z, and hence a study of Problem 11 under this approach

would involve a study of systoem of coordinates which preserve

coustut coefficients In the top order part.

In cases where "2, there is one exception to the preceding

remarks. This In caused by the fact that, although the unmbers of

equaticns and unknowns in the system analogous to (4.2) increase

as r increases, they do it In a sort of inverse way according to

levels. Thus the subsystm corresponding to the part of order

r-l would be vieed as a ystem of (1 r-l2 ) equationo in a( 2

unknowns. Thus we are led to the conclusion that there vil be

much stronger conditions for the existee* of solutions to

Problem 2'.

The author wishes to acknowledge many enlightening conversations

with Aldo Andreotti and, at the same tie, express deepest regrets

at his untimely death on February 21, 1980.
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